Выпуклые многоугольники. Определение выпуклого многоугольника. Диагонали выпуклого многоугольника. Многоугольники. Подробная теория с примерами Теорема о сумме углов н угольника

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Внутренний угол многоугольника - это угол, образованный двумя смежными сторонами многоугольника. Например, ∠ABC является внутренним углом.

Внешний угол многоугольника - это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например, ∠LBC является внешним углом.

Количество углов многоугольника всегда равно количеству его сторон. Это относится и к внутренним углам и к внешним. Несмотря на то, что для каждой вершины многоугольника можно построить два равных внешних угла, из них всегда принимается во внимание только один. Следовательно, чтобы найти количество углов любого многоугольника, надо посчитать количество его сторон.

Сумма внутренних углов

Сумма внутренних углов выпуклого многоугольника равна произведению 180° и количеству сторон без двух.

s = 2d (n - 2)

где s - это сумма углов, 2d - два прямых угла (то есть 2 · 90 = 180°), а n - количество сторон.

Если мы проведём из вершины A многоугольника ABCDEF все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:

Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна 180° (2d ), то сумма углов всех треугольников будет равна произведению 2d на их количество:

s = 2d (n - 2) = 180 · 4 = 720°

Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.

Сумма внешних углов

Сумма внешних углов выпуклого многоугольника равна 360° (или 4d ).

s = 4d

где s - это сумма внешних углов, 4d - четыре прямых угла (то есть 4 · 90 = 360°).

Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна 180° (2d ), так как они являются смежными углами . Например, ∠1 и ∠2 :

Следовательно, если многоугольник имеет n сторон (и n вершин), то сумма внешних и внутренних углов при всех n вершинах будет равна 2dn . Чтобы из этой суммы 2dn получить только сумму внешних углов, надо из неё вычесть сумму внутренних углов, то есть 2d (n - 2):

s = 2dn - 2d (n - 2) = 2dn - 2dn + 4d = 4d

Ломаная

Определение

Ломаной линией , или короче, ломаной , называется конечная последовательность отрезков, такая, что один из концов первого отрезка служит концом второго, другой конец второго отрезка служит концом третьего и т.д. При этом соседние отрезки не лежат на одной прямой. Эти отрезки называют звеньями ломаной.

Виды ломаной

    Ломаная называется замкнутой , если начало первого отрезка совпадает с концом последнего.

    Ломаная может пересекать сама себя, коснуться сама себя, налегать на себя. Если таких особенностей нет, то такая ломаная называется простой .

Многоугольники

Определение

Простая замкнутая ломаная вместе с частью плоскости, ограниченной ею, называется многоугольником .

Замечание

В каждой вершине многоугольника его стороны задают некоторый угол многоугольника. Он может быть как меньше развернутого, так и больше развернутого.

Свойство

У каждого многоугольника есть угол, меньший $180^\circ$.

Доказательство

Пусть дан многоугольник $P$.

Проведем какую-нибудь прямую, не пересекающую его. Будем перемещать ее параллельно в сторону многоугольника. В некоторый момент мы впервые получим прямую $a$, имеющую с многоугольником $P$ хотя бы одну общую точку. От этой прямой многоугольник лежит по одну сторону (при этом некоторые его точки лежат на прямой $a$).

На прямой $a$ лежит хотя бы одна вершина многоугольника. В ней сходится две его стороны, расположенные по одну сторону от прямой $a$ (считая и тот случай, когда одна из них лежит на этой прямой). А значит, при этой вершине угол меньше развернутого.

Определение

Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, содержащей его сторону. Если многоугольник не является выпуклым, его называют невыпуклым .

Замечание

Выпуклый многоугольник является пересечением полуплоскостей, ограниченных прямыми, которые содержат стороны многоугольника.

Свойства выпуклого многоугольника

    У выпуклого многоугольника все углы меньше $180^\circ$.

    Отрезок, соединяющий любые две точки выпуклого многоугольника (в частности, любая его диагональ), содержится в этом многоугольнике.

Доказательство

Докажем первое свойство

Возьмем любой угол $A$ выпуклого многоугольника $P$ и его сторону $a$, идущую из вершины $A$. Пусть $l$ – прямая, содержащая сторону $a$. Так как многоугольник $P$ выпуклый, то он лежит по одну сторону от прямой $l$. Следовательно, и его угол $A$ лежит по одну сторону от этой прямой. Значит угол $A$ меньше развернутого угла, то есть меньше $180^\circ$.

Докажем второе свойство

Возьмем любые две точки $A$ и $B$ выпуклого многоугольника $P$. Многоугольник $P$ является пересечением нескольких полуплоскостей. Отрезок $AB$ содержится в каждой из этих полуплоскостей. Поэтому он содержится и в многоугольнике $P$.

Определение

Диагональю многоугольника называется отрезок, соединяющий его несоседние вершины.

Теорема (о количестве диагоналей n-угольника)

Количество диагоналей выпуклого $n$-угольника вычисляется по формуле $\dfrac{n(n-3)}{2}$.

Доказательство

Из каждой вершины n-угольника можно провести $n-3$ диагонали (нельзя провести диагональ в соседние вершины и в саму эту вершину). Если посчитать все такие возможные отрезки, то их будет $n\cdot(n-3)$, так как вершин $n$. Но каждая диагональ будет посчитана дважды. Таким образом, количество диагоналей n-угольника равно $\dfrac{n(n-3)}{2}$.

Теорема (о сумме углов n-угольника)

Сумма углов выпуклого $n$-угольника равна $180^\circ(n-2)$.

Доказательство

Рассмотрим $n$-угольник $A_1A_2A_3\ldots A_n$.

Возьмём внутри этого многоугольника произвольную точку $O$.

Сумма углов всех треугольников $A_1OA_2$, $A_2OA_3$, $A_3OA_4$, \ldots, $A_{n-1}OA_n$ равна $180^\circ\cdot n$.

C другой стороны эта сумма складывается из суммы всех внутренних углов многоугольника и полного угла $\angle O=\angle 1+\angle 2+\angle 3+\ldots=30^\circ$.

Тогда сумма углов рассматриваемого $n$-угольника равна $180^\circ\cdot n-360^\circ=180^\circ\cdot(n-2)$.

Следствие

Сумма углов невыпуклого $n$-угольника равна $180^\circ(n-2)$.

Доказательство

Рассмотрим многоугольник $A_1A_2\ldots A_n$, у которого только угол $\angle A_2$ невыпуклый, то есть $\angle A_2>180^\circ$.

Обозначим сумму его улов $S$.

Соединим точки $A_1A_3$ и рассмотрим многоугольник $A_1A_3\ldots A_n$.

Сумма углов этого многоугольника равна:

$180^\circ\cdot(n-1-2)=S-\angle A_2+\angle 1+\angle 2=S-\angle A_2+180^\circ-\angle A_1A_2A_3=S+180^\circ-(\angle A_1A_2A_3+\angle A_2)=S+180^\circ-360^\circ$.

Следовательно, $S=180^\circ\cdot(n-1-2)+180^\circ=180^\circ\cdot(n-2)$.

Если у исходного многоугольника более одного невыпуклого угла, то описанную выше операцию можно проделать с каждым таким углом, что и приведет к доказываемому утверждению.

Теорема (о сумме внешних углов выпуклого n-угольника)

Сумма внешних углов выпуклого $n$-угольника равна $360^\circ$.

Доказательство

Внешний угол при вершине $A_1$ равен $180^\circ-\angle A_1$.

Сумма всех внешних углов равна:

$\sum\limits_{n}(180^\circ-\angle A_n)=n\cdot180^\circ - \sum\limits_{n}A_n=n\cdot180^\circ - 180^\circ\cdot(n-2)=360^\circ$.

В основном курсе геометрии доказывается, что сумма углов выпуклого n-угольника равна 180° (n-2). Оказывается, что это утверждение справедливо и для невыпуклых многоугольников.

Теорема 3. Сумма углов произвольного n-угольника равна 180° (n - 2).

Доказательство. Разобьем многоугольник на треугольники, проведением диагоналей (рис. 11). Число таких треугольников равно n-2, и в каждом треугольнике сумма углов равна 180°. Поскольку углы треугольников составляют углы многоугольника, то сумма углов многоугольника равна 180° (n - 2).

Рассмотрим теперь произвольные замкнутые ломаные, возможно с самопересечениями A1A2…AnA1 (рис. 12, а). Такие самопересекающиеся ломаные будем называть звездчатыми многоугольниками (рис. 12, б-г).

Зафиксируем направление подсчета углов против часовой стрелки. Заметим, что углы, образованные замкнутой ломаной, зависят от направления ее обхода. Если направление обхода ломаной меняется на противоположное, то углами многоугольника будут углы, дополняющие углы исходного многоугольника до 360°.

Если M - многоугольник, образован простой замкнутой ломаной, проходимой в направлении по часовой стрелке (рис. 13, а), то сумма углов этого многоугольника будет равна 180° (n - 2). Если же ломаная проходится в направлении против часовой стрелки (рис. 13, б), то сумма углов будет равна 180° (n + 2).

Таким образом, общая формула суммы углов многоугольника, образованного простой замкнутой ломаной, имеет вид = 180° (n 2), где - сумма углов, n - число углов многоугольника, «+» или «-» берется в зависимости от направления обхода ломаной.

Наша задача состоит в том, чтобы вывести формулу суммы углов произвольного многоугольника, образованного замкнутой (возможно самопересекающейся) ломаной. Для этого введем понятие степени многоугольника.

Степенью многоугольника называется число оборотов, совершаемой точкой при полном последовательном обходе его сторон. Причем обороты, совершаемые в направлении против часовой стрелки, считаются со знаком «+», а обороты по часовой стрелке - со знаком «-».

Ясно, что у многоугольника, образованного простой замкнутой ломаной, степень равна +1 или -1 в зависимости от направления обхода. Степень ломаной на рисунке 12, а равна двум. Степень звездчатых семиугольников (рис. 12, в, г) равна соответственно двум и трем.

Аналогичным образом понятие степени определяется и для замкнутых кривых на плоскости. Например, степень кривой, изображенной на рисунке 14 равна двум.


Для нахождения степени многоугольника или кривой можно поступать следующим образом. Предположим, что, двигаясь по кривой (рис. 15, а), мы, начиная с какого-то места A1, совершили полный оборот, и попали в ту же точку A1. Удалим из кривой соответствующий участок и продолжим движение по оставшейся кривой (рис. 15,б). Если, начиная с какого-то места A2, мы снова совершили полный оборот и попали в ту же точку, то удаляем соответствующий участок кривой и продолжаем движение (рис. 15, в). Считая количество удаленных участков со знаками «+» или «-», в зависимости от их направления обхода, получим искомую степень кривой.

Теорема 4. Для произвольного многоугольника имеет место формула

180° (n +2m),

где - сумма углов, n - число углов, m - степень многоугольника.

Доказательство. Пусть многоугольник M имеет степень m и условно изображен на рисунке 16. M1, …, Mk - простые замкнутые ломаные, проходя по которым, точка совершает полные обороты. A1, …, Ak - соответствующие точки самопересечения ломаной, не являющиеся ее вершинами. Обозначим число вершин многоугольника M, входящих в многоугольники M1, …, Mk через n1, …, nk соответственно. Поскольку, помимо вершин многоугольника M, к этим многоугольникам добавляются еще вершины A1, …, Ak, то число вершин многоугольников M1, …, Mk будет равно соответственно n1+1, …, nk+1. Тогда суммы их углов будут равны 180° (n1+12), …, 180° (nk+12). Плюс или минус берется в зависимости от направления обхода ломаных. Сумма углов многоугольника M0, оставшегося от многоугольника M после удаления многоугольников M1, …, Mk, равна 180° (n-n1- …-nk+k2). Суммы углов многоугольников M0, M1, …, Mk дают сумму углов многоугольника M и в каждой вершине A1, …, Ak дополнительно получим 360°. Следовательно, имеем равенство

180° (n1+12)+…+180° (nk+12)+180° (n-n1- …-nk+k2)=+360°k.

180° (n2…2) = 180° (n+2m),

где m - степень многоугольника M.


В качестве примера рассмотрим вычисление суммы углов пятиконечной звездочки (рис. 17, а). Степень соответствующей замкнутой ломаной равна -2. Поэтому искомая сумма углов равна 180.

Геометрическая фигура, составленная из отрезков AB,BC,CD, .., EF, FA таким образом, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек, называется многоугольником. Концы данных отрезков, точки A,B,С, D, …, E,F называются вершинами многоугольника, а сами отрезки AB,BC,CD, .., EF, FA - сторонами многоугольника.

Многоугольник называется выпуклым, если он по одну сторону от каждой прямой, которая проходит через две его смежные вершины. На рисунке ниже представлен выпуклый многоугольник:

А следующий рисунок иллюстрирует невыпуклый многоугольник:

Углом выпуклого многоугольника при данной вершине будет называться угол, образованный сторонами этого многоугольника, сходящимися в данной вершине. Внешним углом выпуклого многоугольника в некоторой вершине называется угол смежный с внутренним углом многоугольника при данной вершине.

Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)

Доказательство: рассмотрим выпуклый n-угольник. Чтобы найти сумму всех внутренних углов, соединим одну из вершин многоугольника с другими вершинами.

В результате получим (n-2) треугольника. Известно, что сумма углов треугольника равна 180 градусам. А так как их количество в многоугольнике (n-2), то сумма углов многоугольника равна 180˚ *(n-2). Это и требовалось доказать.

Задача:

Найти сумму углов выпуклого a) пятиугольник б) шестиугольника в)десятиугольника.

Воспользуемся формулой для вычисления суммы углов выпуклого n-угольника.

а) S5 = 180˚*(5-2) = 180˚ *3 = 540˚.

б) S6 180˚*(6-2) = 180˚*4=720˚.

в) S10 = 180˚*(10-2) = 180˚*8 = 1440˚.

Ответ: а) 540˚. б) 720˚. в) 1440˚.