Формула косинуса угла между прямыми. Угол между двумя прямыми. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Буду кратким. Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x 1 ; y 1 ; z 1) и b = (x 2 ; y 2 ; z 2), то сможете найти угол. Точнее, косинус угла по формуле:

Посмотрим, как эта формула работает на конкретных примерах:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 отмечены точки E и F - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AE и BF.

Поскольку ребро куба не указано, положим AB = 1. Введем стандартную систему координат: начало в точке A, оси x, y, z направим вдоль AB, AD и AA 1 соответственно. Единичный отрезок равен AB = 1. Теперь найдем координаты направляющих векторов для наших прямых.

Найдем координаты вектора AE. Для этого нам потребуются точки A = (0; 0; 0) и E = (0,5; 0; 1). Поскольку точка E - середина отрезка A 1 B 1 , ее координаты равны среднему арифметическому координат концов. Заметим, что начало вектора AE совпадает с началом координат, поэтому AE = (0,5; 0; 1).

Теперь разберемся с вектором BF. Аналогично, разбираем точки B = (1; 0; 0) и F = (1; 0,5; 1), т.к. F - середина отрезка B 1 C 1 . Имеем:
BF = (1 − 1; 0,5 − 0; 1 − 0) = (0; 0,5; 1).

Итак, направляющие векторы готовы. Косинус угла между прямыми - это косинус угла между направляющими векторами, поэтому имеем:

Задача. В правильной трехгранной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, отмечены точки D и E - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AD и BE.

Введем стандартную систему координат: начало координат в точке A, ось x направим вдоль AB, z - вдоль AA 1 . Ось y направим так, чтобы плоскость OXY совпадала с плоскостью ABC. Единичный отрезок равен AB = 1. Найдем координаты направляющих векторов для искомых прямых.

Для начала найдем координаты вектора AD. Рассмотрим точки: A = (0; 0; 0) и D = (0,5; 0; 1), т.к. D - середина отрезка A 1 B 1 . Поскольку начало вектора AD совпадает с началом координат, получаем AD = (0,5; 0; 1).

Теперь найдем координаты вектора BE. Точка B = (1; 0; 0) считается легко. С точкой E - серединой отрезка C 1 B 1 - чуть сложнее. Имеем:

Осталось найти косинус угла:

Задача. В правильной шестигранной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все ребра которой равны 1, отмечены точки K и L - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AK и BL.

Введем стандартную для призмы систему координат: начало координат поместим в центр нижнего основания, ось x направим вдоль FC, ось y - через середины отрезков AB и DE, а ось z - вертикально вверх. Единичный отрезок снова равен AB = 1. Выпишем координаты интересующих нас точек:

Точки K и L - середины отрезков A 1 B 1 и B 1 C 1 соответственно, поэтому их координаты находятся через среднее арифметическое. Зная точки, найдем координаты направляющих векторов AK и BL:

Теперь найдем косинус угла:

Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F - середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.

Введем стандартную систему координат: начало в точке A, оси x и y направим вдоль AB и AD соответственно, а ось z направим вертикально вверх. Единичный отрезок равен AB = 1.

Точки E и F - середины отрезков SB и SC соответственно, поэтому их координаты находятся как среднее арифметическое концов. Выпишем координаты интересующих нас точек:
A = (0; 0; 0); B = (1; 0; 0)

Зная точки, найдем координаты направляющих векторов AE и BF:

Координаты вектора AE совпадают с координатами точки E, поскольку точка A - начало координат. Осталось найти косинус угла:


Задача 1

Найти косинус угла между прямыми $\frac{x+3}{5} =\frac{y-2}{-3} =\frac{z-1}{4} $ и $\left\{\begin{array}{c} {x=2\cdot t-3} \\ {y=-t+1} \\ {z=3\cdot t+5} \end{array}\right. $.

Пусть в пространстве заданы две прямые: $\frac{x-x_{1} }{m_{1} } =\frac{y-y_{1} }{n_{1} } =\frac{z-z_{1} }{p_{1} } $ и $\frac{x-x_{2} }{m_{2} } =\frac{y-y_{2} }{n_{2} } =\frac{z-z_{2} }{p_{2} } $. Выберем в пространстве произвольную точку и проведем через неё две вспомогательные прямые, параллельные данным. Углом между данными прямыми является любой из двух смежных углов, образованных вспомогательными прямыми. Косинус одного из углов между прямыми можно найти по известной формуле $\cos \phi =\frac{m_{1} \cdot m_{2} +n_{1} \cdot n_{2} +p_{1} \cdot p_{2} }{\sqrt{m_{1}^{2} +n_{1}^{2} +p_{1}^{2} } \cdot \sqrt{m_{2}^{2} +n_{2}^{2} +p_{2}^{2} } } $. Если значение $\cos \phi >0$, то получен острый угол между прямыми, если $\cos \phi

Канонические уравнения первой прямой: $\frac{x+3}{5} =\frac{y-2}{-3} =\frac{z-1}{4} $.

Канонические уравнения второй прямой можно получить из параметрических:

\ \ \

Таким образом, канонические уравнения данной прямой: $\frac{x+3}{2} =\frac{y-1}{-1} =\frac{z-5}{3} $.

Вычисляем:

\[\cos \phi =\frac{5\cdot 2+\left(-3\right)\cdot \left(-1\right)+4\cdot 3}{\sqrt{5^{2} +\left(-3\right)^{2} +4^{2} } \cdot \sqrt{2^{2} +\left(-1\right)^{2} +3^{2} } } =\frac{25}{\sqrt{50} \cdot \sqrt{14} } \approx 0,9449.\]

Задача 2

Первая прямая проходит через заданные точки $A\left(2,-4,-1\right)$ и $B\left(-3,5,6\right)$, вторая прямая -- через заданные точки $C\left(1,-2,8\right)$ и $D\left(6,7,-2\right)$. Найти расстояние между этими прямыми.

Пусть некоторая прямая перпендикулярна к прямым $AB$ и $CD$ и пересекает их в точках $M$ и $N$ соответственно. При таких условиях длина отрезка $MN$ равна расстоянию между прямыми $AB$ и $CD$.

Строим вектор $\overline{AB}$:

\[\overline{AB}=\left(-3-2\right)\cdot \bar{i}+\left(5-\left(-4\right)\right)\cdot \bar{j}+\left(6-\left(-1\right)\right)\cdot \bar{k}=-5\cdot \bar{i}+9\cdot \bar{j}+7\cdot \bar{k}.\]

Пусть отрезок, изображающий расстояние между прямыми, проходит через точку $M\left(x_{M} ,y_{M} ,z_{M} \right)$ на прямой $AB$.

Строим вектор $\overline{AM}$:

\[\overline{AM}=\left(x_{M} -2\right)\cdot \bar{i}+\left(y_{M} -\left(-4\right)\right)\cdot \bar{j}+\left(z_{M} -\left(-1\right)\right)\cdot \bar{k}=\] \[=\left(x_{M} -2\right)\cdot \bar{i}+\left(y_{M} +4\right)\cdot \bar{j}+\left(z_{M} +1\right)\cdot \bar{k}.\]

Векторы $\overline{AB}$ и $\overline{AM}$ совпадают, следовательно, они коллинеарны.

Известно, что если векторы $\overline{a}=x_{1} \cdot \overline{i}+y_{1} \cdot \overline{j}+z_{1} \cdot \overline{k}$ и $\overline{b}=x_{2} \cdot \overline{i}+y_{2} \cdot \overline{j}+z_{2} \cdot \overline{k}$ коллинеарны, то их координаты пропорциональны, то есть $\frac{x_{{\it 2}} }{{\it x}_{{\it 1}} } =\frac{y_{{\it 2}} }{{\it y}_{{\it 1}} } =\frac{z_{{\it 2}} }{{\it z}_{{\it 1}} } $.

$\frac{x_{M} -2}{-5} =\frac{y_{M} +4}{9} =\frac{z_{M} +1}{7} =m$, где $m$ -- результат деления.

Отсюда получаем: $x_{M} -2=-5\cdot m$; $y_{M} +4=9\cdot m$; $z_{M} +1=7\cdot m$.

Окончательно получаем выражения для координат точки $M$:

Строим вектор $\overline{CD}$:

\[\overline{CD}=\left(6-1\right)\cdot \bar{i}+\left(7-\left(-2\right)\right)\cdot \bar{j}+\left(-2-8\right)\cdot \bar{k}=5\cdot \bar{i}+9\cdot \bar{j}-10\cdot \bar{k}.\]

Пусть отрезок, изображающий расстояние между прямыми, проходит через точку $N\left(x_{N} ,y_{N} ,z_{N} \right)$ на прямой $CD$.

Строим вектор $\overline{CN}$:

\[\overline{CN}=\left(x_{N} -1\right)\cdot \bar{i}+\left(y_{N} -\left(-2\right)\right)\cdot \bar{j}+\left(z_{N} -8\right)\cdot \bar{k}=\] \[=\left(x_{N} -1\right)\cdot \bar{i}+\left(y_{N} +2\right)\cdot \bar{j}+\left(z_{N} -8\right)\cdot \bar{k}.\]

Векторы $\overline{CD}$ и $\overline{CN}$ совпадають, следовательно, они коллинеарны. Применяем условие коллинеарности векторов :

$\frac{x_{N} -1}{5} =\frac{y_{N} +2}{9} =\frac{z_{N} -8}{-10} =n$, где $n$ -- результат деления.

Отсюда получаем: $x_{N} -1=5\cdot n$; $y_{N} +2=9\cdot n$; $z_{N} -8=-10\cdot n$.

Окончательно получаем выражения для координат точки $N$:

Строим вектор $\overline{MN}$:

\[\overline{MN}=\left(x_{N} -x_{M} \right)\cdot \bar{i}+\left(y_{N} -y_{M} \right)\cdot \bar{j}+\left(z_{N} -z_{M} \right)\cdot \bar{k}.\]

Подставляем выражения для координат точек $M$ и $N$:

\[\overline{MN}=\left(1+5\cdot n-\left(2-5\cdot m\right)\right)\cdot \bar{i}+\] \[+\left(-2+9\cdot n-\left(-4+9\cdot m\right)\right)\cdot \bar{j}+\left(8-10\cdot n-\left(-1+7\cdot m\right)\right)\cdot \bar{k}.\]

Выполнив действия, получаем:

\[\overline{MN}=\left(-1+5\cdot n+5\cdot m\right)\cdot \bar{i}+\left(2+9\cdot n-9\cdot m\right)\cdot \bar{j}+\left(9-10\cdot n-7\cdot m\right)\cdot \bar{k}.\]

Поскольку прямые $AB$ и $MN$ перпендикулярны, то скалярное произведение соответствующих векторов равно нулю, то есть $\overline{AB}\cdot \overline{MN}=0$:

\[-5\cdot \left(-1+5\cdot n+5\cdot m\right)+9\cdot \left(2+9\cdot n-9\cdot m\right)+7\cdot \left(9-10\cdot n-7\cdot m\right)=0;\] \

Выполнив действия, получаем первое уравнение для определения $m$ и $n$: $155\cdot m+14\cdot n=86$.

Поскольку прямые $CD$ и $MN$ перпендикулярны, то скалярное произведение соответствующих векторов равно нулю, то есть $\overline{CD}\cdot \overline{MN}=0$:

\ \[-5+25\cdot n+25\cdot m+18+81\cdot n-81\cdot m-90+100\cdot n+70\cdot m=0.\]

Выполнив действия, получаем второе уравнение для определения $m$ и $n$: $14\cdot m+206\cdot n=77$.

Находим $m$ и $n$, решив систему уравнений $\left\{\begin{array}{c} {155\cdot m+14\cdot n=86} \\ {14\cdot m+206\cdot n=77} \end{array}\right. $.

Применяем метод Крамера:

\[\Delta =\left|\begin{array}{cc} {155} & {14} \\ {14} & {206} \end{array}\right|=31734; \] \[\Delta _{m} =\left|\begin{array}{cc} {86} & {14} \\ {77} & {206} \end{array}\right|=16638; \] \[\Delta _{n} =\left|\begin{array}{cc} {155} & {86} \\ {14} & {77} \end{array}\right|=10731;\] \

Находим координаты точек $M$ и $N$:

\ \

Окончательно:

Окончательно записываем вектор $\overline{MN}$:

$\overline{MN}=\left(2,691-\left(-0,6215\right)\right)\cdot \bar{i}+\left(1,0438-0,7187\right)\cdot \bar{j}+\left(4,618-2,6701\right)\cdot \bar{k}$ или $\overline{MN}=3,3125\cdot \bar{i}+0,3251\cdot \bar{j}+1,9479\cdot \bar{k}$.

Расстояние между прямыми $AB$ и $CD$ -- это длина вектора $\overline{MN}$:$d=\sqrt{3,3125^{2} +0,3251^{2} +1,9479^{2} } \approx 3,8565$ лин. ед.

Пусть две прямые l и m на плоскости в декартовой системе координат заданы общими уравнениями: l: A 1 x + B 1 y + C 1 = 0, m: A 2 x + B 2 y + C 2 = 0

Векторы нормалей к данным прямым: = (A 1 , B 1) – к прямой l,

= (A 2 , B 2) – к прямой m.

Пусть j - угол между прямыми l и m.

Так как углы с взаимно перпендикулярными сторонами либо равны, либо в сумме составляют p, то , то есть cos j = .

Итак, мы доказали следующую теорему.

Теорема. Пусть j - угол между двумя прямыми на плоскости, и пусть эти прямые заданы в декартовой системе координат общими уравнениями A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0. Тогда cos j = .

Упражнения.

1) Выведите формулу для вычисления угла между прямыми, если:

(1) обе прямые заданы параметрически; (2) обе прямые заданы каноническими уравнениями; (3) одна прямая задана параметрически, другая прямая – общим уравнением; (4) обе прямые заданы уравнением с угловым коэффициентом.

2) Пусть j - угол между двумя прямыми на плоскости, и пусть эти прямые заданы декартовой системе координат уравнениями y = k 1 x + b 1 и y =k 2 x + b 2 .

Тогда tg j = .

3) Исследуйте взаимное расположение двух прямых, заданных общими уравнениями в декартовой системе координат, и заполните таблицу:

Расстояние от точки до прямой на плоскости.

Пусть на плоскости в декартовой системе координат прямая l задана общим уравнением Ax + By + C = 0. Найдем расстояние от точки M(x 0 , y 0) до прямой l.

Расстояние от точки M до прямой l – это длина перпендикуляра HM (H Î l, HM ^ l).

Вектор и вектор нормали к прямой l коллинеарны, так что | | = | | | | и | | = .

Пусть координаты точки H (x,y).

Так как точка H принадлежит прямой l, то Ax + By + C = 0 (*).

Координаты векторов и : = (x 0 - x, y 0 - y), = (A, B).

| | = = =

(C = -Ax - By , см. (*))

Теорема. Пусть прямая l задана в декартовой системе координат общим уравнением Ax + By + C = 0. Тогда расстояние от точки M(x 0 , y 0) до данной прямой вычисляется по формуле: r (M; l) = .

Упражнения.

1) Выведите формулу для вычисления расстояния от точки до прямой, если: (1) прямая задана параметрически; (2) прямая задана каноническим уравнениям; (3) прямая задана уравнением с угловым коэффициентом.

2) Напишите уравнение окружности, касающейся прямой 3x – y = 0,с центром в точке Q(-2,4).

3) Напишите уравнения прямых, делящих углы, образованные пересечением прямых 2x + y - 1 = 0 и x + y + 1 = 0 , пополам.

§ 27. Аналитическое задание плоскости в пространстве

Определение . Вектором нормали к плоскости будем называть ненулевой вектор, любой представитель которого перпендикулярен данной плоскости.

Замечание. Ясно, что если хотя бы один представитель вектора перпендикулярен плоскости, то и все остальные представители вектора перпендикулярны этой плоскости.

Пусть в пространстве задана декартова система координат.

Пусть дана плоскость a, = (A, B, C) – вектор нормали к этой плоскости, точка M (x 0 , y 0 , z 0) принадлежит плоскости a.

Для любой точки N(x, y, z) плоскости a векторы и ортогональны, то есть их скалярное произведение равно нулю: = 0. Запишем последнее равенство в координатах: A(x - x 0) + B(y - y 0) + C(z - z 0) = 0.

Пусть -Ax 0 - By 0 - Cz 0 = D, тогда Ax + By + Cz + D = 0.

Возьмем точку К (x, y) такую, что Ax + By + Cz + D = 0. Так как D = -Ax 0 - By 0 - Cz 0 , то A(x - x 0) + B(y - y 0) + C(z - z 0) = 0. Так как координаты направленного отрезка = (x - x 0 , y - y 0 , z - z 0), то последнее равенство означает, что ^ , и, следовательно, K Î a.

Итак, мы доказали следующую теорему:

Теорема. Любую плоскость в пространстве в декартовой системе координат можно задать уравнением вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0), где (A, B, C) – координаты вектора нормали к этой плоскости.

Верно и обратное.

Теорема. Любое уравнение вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) в декартовой системе координат задает некоторую плоскость, при этом (A, B, C) – координаты вектора нормали к этой плоскости.

Доказательство.

Возьмем точку M (x 0 , y 0 , z 0) такую, что Ax 0 + By 0 + Cz 0 + D = 0 и вектор = (A, B, C) ( ≠ q).

Через точку M перпендикулярно вектору проходит плоскость (и при том только одна). По предыдущей теореме эта плоскость задается уравнением Ax + By + Cz + D = 0.

Определение. Уравнение вида Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) называется общим уравнением плоскости .

Пример.

Напишем уравнение плоскости, проходящей через точки M (0,2,4), N (1,-1,0) и K (-1,0,5).

1. Найдем координаты вектора нормали к плоскости (MNK). Так как векторное произведение ´ ортогонально не коллинеарным векторам и , то вектор коллинеарен ´ .

= (1, -3, -4), = (-1, -2, 1);

´ = ,

´ = (-11, 3, -5).

Итак, в качестве вектора нормали возьмем вектор = (-11, 3, -5).

2. Воспользуемся теперь результатами первой теоремы:

уравнение данной плоскости A(x - x 0) + B(y - y 0) + C(z - z 0) = 0, где (A, B, C) – координаты вектора нормали, (x 0 , y 0 , z 0) – координаты точки лежащей в плоскости (например, точки M).

11(x - 0) + 3(y - 2) - 5(z - 4) = 0

11x + 3y – 5z + 14 = 0

Ответ: -11x + 3y - 5z + 14 = 0.

Упражнения.

1) Напишите уравнение плоскости, если

(1) плоскость проходит через точку M (-2,3,0) параллельно плоскости 3x + y + z = 0;

(2) плоскость содержит ось (Ox) и перпендикулярна плоскости x + 2y – 5z + 7 = 0.

2) Напишите уравнение плоскости, проходящей через три данные точки.

§ 28. Аналитическое задание полупространства*

Замечание* . Пусть фиксирована некоторая плоскость. Под полупространством мы будем понимать множество точек, лежащих по одну сторону от данной плоскости, то есть две точки лежат в одном полупространстве, если отрезок, их соединяющий, не пересекает данную плоскость. Данная плоскость называется границей этого полупространства . Объединение данной плоскости и полупространства будем называть замкнутым полупространством .

Пусть в пространстве фиксирована декартова система координат.

Теорема. Пусть плоскость a задана общим уравнением Ax + By + Cz + D = 0. Тогда одно из двух полупространств, на которые плоскость a делит пространство, задается неравенством Ax + By + Cz + D > 0, а второе полупространство задается неравенством Ax + By + Cz + D < 0.

Доказательство.

Отложим вектор нормали = (A, B, С) к плоскости a от точки M (x 0 , y 0 , z 0), лежащей на данной плоскости: = , M Î a, MN ^ a. Плоскость делить пространство на два полупространства: b 1 и b 2 . Ясно, что точка N принадлежит одному из этих полупространств. Без ограничения общности будем считать, что N Î b 1 .

Докажем, что полупространство b 1 задается неравенством Ax + By + Cz + D > 0.

1) Возьмем точку K(x,y,z) в полупространстве b 1 . Угол Ð NMK – угол между векторами и - острый, поэтому скалярное произведение этих векторов положительно: > 0. Запишем это неравенство в координатах: A(x - x 0) + B(y - y 0) + C(z - z 0) > 0, то есть Ax + By + Cy - Ax 0 - By 0 - C z 0 > 0.

Так как M Î b 1 , то Ax 0 + By 0 + C z 0 + D = 0, поэтому -Ax 0 - By 0 - C z 0 = D. Следовательно, последнее неравенство можно записать так: Ax + By + Cz + D > 0.

2) Возьмем точку L(x,y) такую, что Ax + By + Cz + D > 0.

Перепишем неравенство, заменив D на (-Ax 0 - By 0 - C z 0) (так как M Î b 1 , то Ax 0 + By 0 + C z 0 + D = 0): A(x - x 0) + B(y - y 0) + C(z - z 0) > 0.

Вектор с координатами (x - x 0 ,y - y 0 , z - z 0) – это вектор , поэтому выражение A(x - x 0) + B(y - y 0) + C(z - z 0) можно понимать, как скалярное произведение векторов и . Так как скалярное произведение векторов и положительно, то угол между ними острый и точка L Î b 1 .

Аналогично можно доказать, что полупространство b 2 задается неравенством Ax + By + Cz + D < 0.

Замечания.

1) Ясно, что доказательство, приведенное выше, не зависит от выбора точки M в плоскости a.

2) Ясно, что одно и то же полупространство можно задать различными неравенствами.

Верно и обратное.

Теорема. Любое линейное неравенство вида Ax + By + Cz + D > 0 (или Ax + By + Cz + D < 0) (A 2 + B 2 + C 2 ≠ 0) задает в пространстве в декартовой системе координат полупространство с границей Ax + By + Cz + D = 0.

Доказательство.

Уравнение Ax + By + Cz + D = 0 (A 2 + B 2 + C 2 ≠ 0) в пространстве задает некоторую плоскость a (см. § …). Как было доказано в предыдущей теореме одно из двух полупространств, на которые плоскость делит пространство задается неравенством Ax Ax + By + Cz + D > 0.

Замечания.

1) Ясно, что замкнутое полупространство можно задать нестрогим линейным неравенством, и любое нестрогое линейное неравенство в декартовой системе координат задает замкнутое полупространство.

2) Любой выпуклый многогранник можно задать как пересечение замкнутых полупространств (границы которых – это плоскости, содержащие грани многогранника), то есть аналитически – системой линейных нестрогих неравенств.

Упражнения.

1) Докажите две представленные теоремы для произвольной аффинной системы координат.

2) Верно ли обратное, что любая ли система нестрогих линейных неравенств задает выпуклый многоугольник?

Упражнение.

1) Исследуйте взаимное расположение двух плоскостей, заданных общими уравнениями в декартовой системе координат, и заполните таблицу.

а. Пусть даны две прямые Эти прямые как было указано в главе 1, образуют различные положительные и отрицательные углы, которые при этом могут быть как острыми, так и тупыми. Зная один из этих углов мы легко найдем какой-либо другой.

Между прочим, у всех этих углов численная величина тангенса одна и та же, различие может быть только в знаке

Уравнения прямых. Числа суть проекции направляющих векторов первой и второй прямой Угол между этими векторами равен одному из углов, образуемых прямыми линиями. Поэтому задача сводится к определению угла между векторами, Мы получим

Для простоты можно условиться под углом между двумя прямыми понимать острый положительный угол (как, например, на рис. 53).

Тогда тангенс этого угла будет всегда положительным. Таким образом, если в правой части формулы (1) получится знак минус, то мы его должны отбросить, т. е. сохранить только абсолютную величину.

Пример. Определить угол между прямыми

По формуле (1) имеем

с. Если будет указано, какая из сторон угла является его началом и какая концом, то, отсчитывая всегда направление угла против часовой стрелки, мы можем формулы (1) извлечь нечто большее. Как нетрудно убедиться из рис. 53 знак получающийся в правой части формулы (1), будет указывать, какой именно - острый или тупой - угол образует вторая прямая с первой.

(Действительно, из рис, 53 мы усматриваем, что угол между первым и вторым направляющими векторами или равен искомому углу между прямыми, или отличается от него на ±180°.)

d. Если прямые параллельны, то параллельны и их направляющие векторы, Применяя условие параллельности двух векторов получим!

Это есть условием необходимое и достаточное для параллельности двух прямых.

Пример. Прямые

параллельны, так как

e. Если прямые перпендикулярны то их направляющие векторы тоже перпендикулярны. Применяя условие перпендикулярности двух векторов мы получим условие перпендикулярности двух прямых а именно

Пример. Прямые

перпендикулярны ввиду того, что

В связи с условиями параллельности и перпендикулярности решим следующие две задачи.

f. Через точку провести прямую параллельно данной прямой

Решение проводится так. Так как искомая прямая параллельна данной, то за ее направляющий вектор можно взять тот же самый, что и у данной прямой, т. е. вектор с проекциями А и В. А тогда уравнение искомой прямой напишется в форме (§ 1)

Пример. Уравнение прямой, проходящей через точку (1; 3) параллельно прямой

будет следующее!

g. Через точку провести прямую перпендикулярно данной прямой

Здесь за направляющий вектор уже не годится брать вектор с проекциями А и , а надо веять вектор, ему перпендикулярный. Проекции этого вектора должны быть выбраны следовательно, согласно условию перпендикулярности обоих векторов, т. е. согласно условию

Выполнить же это условие можно бесчисленным множеством способов, так как здесь одно уравнение с двумя неизвестными Но проще всего взять иди же Тогда уравнение искомой прямой напишется в форме

Пример. Уравнение прямой, проходящей через точку (-7; 2) в перпендикулярной прямой

будет следующее (по второй формуле)!

h. В том случаем когда прямые заданы уравнениями вида

переписывая эти уравнения иначе, имеем

Данный материал посвящен такому понятию, как угол между двумя пересекающимися прямыми. В первом пункте мы поясним, что он из себя представляет, и покажем его на иллюстрациях. Потом разберем, какими способами можно найти синус, косинус этого угла и сам угол (отдельно рассмотрим случаи с плоскостью и трехмерным пространством), приведем нужные формулы и покажем на примерах, как именно они применяются на практике.

Для того чтобы понять, что такое угол, образующийся при пересечении двух прямых, нам потребуется вспомнить само определение угла, перпендикулярности и точки пересечения.

Определение 1

Мы называем две прямые пересекающимися, если у них есть одна общая точка. Эта точка называется точкой пересечения двух прямых.

Каждая прямая разделяется точкой пересечения на лучи. Обе прямые при этом образуют 4 угла, из которых два – вертикальные, а два – смежные. Если мы знаем меру одного из них, то можем определить и другие оставшиеся.

Допустим, нам известно, что один из углов равен α . В таком случае угол, который является вертикальным по отношению к нему, тоже будет равен α . Чтобы найти оставшиеся углы, нам надо вычислить разность 180 ° - α . Если α будет равно 90 градусам, то все углы будут прямыми. Пересекающиеся под прямым углом линии называются перпендикулярными (понятию перпендикулярности посвящена отдельная статья).

Взгляните на рисунок:

Перейдем к формулированию основного определения.

Определение 2

Угол, образованный двумя пересекающимися прямыми – это мера меньшего из 4 -х углов, которые образуют две эти прямые.

Из определения нужно сделать важный вывод: размер угла в этом случае будет выражен любым действительным числом в интервале (0 , 90 ] . Если прямые являются перпендикулярными, то угол между ними в любом случае будет равен 90 градусам.

Умение находить меру угла между двумя пересекающимися прямыми полезно для решения многих практических задач. Метод решения можно выбрать из нескольких вариантов.

Для начала мы можем взять геометрические методы. Если нам известно что-то о дополнительных углах, то можно связать их с нужным нам углом, используя свойства равных или подобных фигур. Например, если мы знаем стороны треугольника и нужно вычислить угол между прямыми, на которых эти стороны расположены, то для решения нам подойдет теорема косинусов. Если у нас в условии есть прямоугольный треугольник, то для подсчетов нам также пригодится знание синуса, косинуса и тангенса угла.

Координатный метод тоже весьма удобен для решения задач такого типа. Поясним, как правильно его использовать.

У нас есть прямоугольная (декартова) система координат O x y , в которой заданы две прямые. Обозначим их буквами a и b . Прямые при этом можно описать с помощью каких-либо уравнений. Исходные прямые имеют точку пересечения M . Как определить искомый угол (обозначим его α) между этими прямыми?

Начнем с формулировки основного принципа нахождения угла в заданных условиях.

Нам известно, что с понятием прямой линии тесно связаны такие понятия, как направляющий и нормальный вектор. Если у нас есть уравнение некоторой прямой, из него можно взять координаты этих векторов. Мы можем сделать это сразу для двух пересекающихся прямых.

Угол, образуемый двумя пересекающимися прямыми, можно найти с помощью:

  • угла между направляющими векторами;
  • ­угла между нормальными векторами;
  • угла между нормальным вектором одной прямой и направляющим вектором другой.

Теперь рассмотрим каждый способ отдельно.

1. Допустим, что у нас есть прямая a с направляющим вектором a → = (a x , a y) и прямая b с направляющим вектором b → (b x , b y) . Теперь отложим два вектора a → и b → от точки пересечения. После этого мы увидим, что они будут располагаться каждый на своей прямой. Тогда у нас есть четыре варианта их взаимного расположения. См. иллюстрацию:

Если угол между двумя векторами не является тупым, то он и будет нужным нам углом между пересекающимися прямыми a и b . Если же он тупой, то искомый угол будет равен углу, смежному с углом a → , b → ^ . Таким образом, α = a → , b → ^ в том случае, если a → , b → ^ ≤ 90 ° , и α = 180 ° - a → , b → ^ , если a → , b → ^ > 90 ° .

Исходя из того, что косинусы равных углов равны, мы можем переписать получившиеся равенства так: cos α = cos a → , b → ^ , если a → , b → ^ ≤ 90 ° ; cos α = cos 180 ° - a → , b → ^ = - cos a → , b → ^ , если a → , b → ^ > 90 ° .

Во втором случае были использованы формулы приведения. Таким образом,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 - cos a → , b → ^ , cos a → , b → ^ < 0 ⇔ cos α = cos a → , b → ^

Запишем последнюю формулу словами:

Определение 3

Косинус угла, образованного двумя пересекающимися прямыми, будет равен модулю косинуса угла между его направляющими векторами.

Общий вид формулы косинуса угла между двумя векторами a → = (a x , a y) и b → = (b x , b y) выглядит так:

cos a → , b → ^ = a → , b → ^ a → · b → = a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Из нее мы можем вывести формулу косинуса угла между двумя заданными прямыми:

cos α = a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 = a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Тогда сам угол можно найти по следующей формуле:

α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Здесь a → = (a x , a y) и b → = (b x , b y) – это направляющие векторы заданных прямых.

Приведем пример решения задачи.

Пример 1

В прямоугольной системе координат на плоскости заданы две пересекающиеся прямые a и b . Их можно описать параметрическими уравнениями x = 1 + 4 · λ y = 2 + λ λ ∈ R и x 5 = y - 6 - 3 . Вычислите угол между этими прямыми.

Решение

У нас в условии есть параметрическое уравнение, значит, для этой прямой мы сразу можем записать координаты ее направляющего вектора. Для этого нам нужно взять значения коэффициентов при параметре, т.е. прямая x = 1 + 4 · λ y = 2 + λ λ ∈ R будет иметь направляющий вектор a → = (4 , 1) .

Вторая прямая описана с помощью канонического уравнения x 5 = y - 6 - 3 . Здесь координаты мы можем взять из знаменателей. Таким образом, у этой прямой есть направляющий вектор b → = (5 , - 3) .

Далее переходим непосредственно к нахождению угла. Для этого просто подставляем имеющиеся координаты двух векторов в приведенную выше формулу α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 . Получаем следующее:

α = a r c cos 4 · 5 + 1 · (- 3) 4 2 + 1 2 · 5 2 + (- 3) 2 = a r c cos 17 17 · 34 = a r c cos 1 2 = 45 °

Ответ : данные прямые образуют угол в 45 градусов.

Мы можем решить подобную задачу с помощью нахождения угла между нормальными векторами. Если у нас есть прямая a с нормальным вектором n a → = (n a x , n a y) и прямая b с нормальным вектором n b → = (n b x , n b y) , то угол между ними будет равен углу между n a → и n b → либо углу, который будет смежным с n a → , n b → ^ . Этот способ показан на картинке:

Формулы для вычисления косинуса угла между пересекающимися прямыми и самого этого угла с помощью координат нормальных векторов выглядят так:

cos α = cos n a → , n b → ^ = n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2 α = a r c cos n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2

Здесь n a → и n b → обозначают нормальные векторы двух заданных прямых.

Пример 2

В прямоугольной системе координат заданы две прямые с помощью уравнений 3 x + 5 y - 30 = 0 и x + 4 y - 17 = 0 . Найдите синус, косинус угла между ними и величину самого этого угла.

Решение

Исходные прямые заданы с помощью нормальных уравнений прямой вида A x + B y + C = 0 . Нормальный вектор обозначим n → = (A , B) . Найдем координаты первого нормального вектора для одной прямой и запишем их: n a → = (3 , 5) . Для второй прямой x + 4 y - 17 = 0 нормальный вектор будет иметь координаты n b → = (1 , 4) . Теперь добавим полученные значения в формулу и подсчитаем итог:

cos α = cos n a → , n b → ^ = 3 · 1 + 5 · 4 3 2 + 5 2 · 1 2 + 4 2 = 23 34 · 17 = 23 2 34

Если нам известен косинус угла, то мы можем вычислить его синус, используя основное тригонометрическое тождество. Поскольку угол α , образованный прямыми, не является тупым, то sin α = 1 - cos 2 α = 1 - 23 2 34 2 = 7 2 34 .

В таком случае α = a r c cos 23 2 34 = a r c sin 7 2 34 .

Ответ: cos α = 23 2 34 , sin α = 7 2 34 , α = a r c cos 23 2 34 = a r c sin 7 2 34

Разберем последний случай – нахождение угла между прямыми, если нам известны координаты направляющего вектора одной прямой и нормального вектора другой.

Допустим, что прямая a имеет направляющий вектор a → = (a x , a y) , а прямая b – нормальный вектор n b → = (n b x , n b y) . Нам надо отложить эти векторы от точки пересечения и рассмотреть все варианты их взаимного расположения. См. на картинке:

Если величина угла между заданными векторами не более 90 градусов, получается, что он будет дополнять угол между a и b до прямого угла.

a → , n b → ^ = 90 ° - α в том случае, если a → , n b → ^ ≤ 90 ° .

Если он менее 90 градусов, то мы получим следующее:

a → , n b → ^ > 90 ° , тогда a → , n b → ^ = 90 ° + α

Используя правило равенства косинусов равных углов, запишем:

cos a → , n b → ^ = cos (90 ° - α) = sin α при a → , n b → ^ ≤ 90 ° .

cos a → , n b → ^ = cos 90 ° + α = - sin α при a → , n b → ^ > 90 ° .

Таким образом,

sin α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° - cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , a → , n b → ^ > 0 - cos a → , n b → ^ , a → , n b → ^ < 0 ⇔ ⇔ sin α = cos a → , n b → ^

Сформулируем вывод.

Определение 4

Чтобы найти синус угла между двумя прямыми, пересекающимися на плоскости, нужно вычислить модуль косинуса угла между направляющим вектором первой прямой и нормальным вектором второй.

Запишем необходимые формулы. Нахождение синуса угла:

sin α = cos a → , n b → ^ = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Нахождение самого угла:

α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Здесь a → является направляющим вектором первой прямой, а n b → – нормальным вектором второй.

Пример 3

Две пересекающиеся прямые заданы уравнениями x - 5 = y - 6 3 и x + 4 y - 17 = 0 . Найдите угол пересечения.

Решение

Берем координаты направляющего и нормального вектора из заданных уравнений. Получается a → = (- 5 , 3) и n → b = (1 , 4) . Берем формулу α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2 и считаем:

α = a r c sin = - 5 · 1 + 3 · 4 (- 5) 2 + 3 2 · 1 2 + 4 2 = a r c sin 7 2 34

Обратите внимание, что мы взяли уравнения из предыдущей задачи и получили точно такой же результат, но другим способом.

Ответ: α = a r c sin 7 2 34

Приведем еще один способ нахождения нужного угла с помощью угловых коэффициентов заданных прямых.

У нас есть прямая a , которая задана в прямоугольной системе координат с помощью уравнения y = k 1 · x + b 1 , и прямая b , заданная как y = k 2 · x + b 2 . Это уравнения прямых с угловым коэффициентом. Чтобы найти угол пересечения, используем формулу:

α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 , где k 1 и k 2 являются угловыми коэффициентами заданных прямых. Для получения этой записи были использованы формулы определения угла через координаты нормальных векторов.

Пример 4

Есть две пересекающиеся на плоскости прямые, заданные уравнениями y = - 3 5 x + 6 и y = - 1 4 x + 17 4 . Вычислите величину угла пересечения.

Решение

Угловые коэффициенты наших прямых равны k 1 = - 3 5 и k 2 = - 1 4 . Добавим их в формулу α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 и подсчитаем:

α = a r c cos - 3 5 · - 1 4 + 1 - 3 5 2 + 1 · - 1 4 2 + 1 = a r c cos 23 20 34 24 · 17 16 = a r c cos 23 2 34

Ответ: α = a r c cos 23 2 34

В выводах этого пункта следует отметить, что приведенные здесь формулы нахождения угла не обязательно учить наизусть. Для этого достаточно знать координаты направляющих и/или нормальных векторов заданных прямых и уметь определять их по разным типам уравнений. А вот формулы для вычисления косинуса угла лучше запомнить или записать.

Как вычислить угол между пересекающимися прямыми в пространстве

Вычисление такого угла можно свести к вычислению координат направляющих векторов и определению величины угла, образованного этими векторами. Для таких примеров используются такие же рассуждения, которые мы приводили до этого.

Допустим, что у нас есть прямоугольная система координат, расположенная в трехмерном пространстве. В ней заданы две прямые a и b с точкой пересечения M . Чтобы вычислить координаты направляющих векторов, нам нужно знать уравнения этих прямых. Обозначим направляющие векторы a → = (a x , a y , a z) и b → = (b x , b y , b z) . Для вычисления косинуса угла между ними воспользуемся формулой:

cos α = cos a → , b → ^ = a → , b → a → · b → = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Для нахождения самого угла нам понадобится эта формула:

α = a r c cos a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Пример 5

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x 1 = y - 3 = z + 3 - 2 . Известно, что она пересекается с осью O z . Вычислите угол пересечения и косинус этого угла.

Решение

Обозначим угол, который надо вычислить, буквой α . Запишем координаты направляющего вектора для первой прямой – a → = (1 , - 3 , - 2) . Для оси аппликат мы можем взять координатный вектор k → = (0 , 0 , 1) в качестве направляющего. Мы получили необходимые данные и можем добавить их в нужную формулу:

cos α = cos a → , k → ^ = a → , k → a → · k → = 1 · 0 - 3 · 0 - 2 · 1 1 2 + (- 3) 2 + (- 2) 2 · 0 2 + 0 2 + 1 2 = 2 8 = 1 2

В итоге мы получили, что нужный нам угол будет равен a r c cos 1 2 = 45 ° .

Ответ: cos α = 1 2 , α = 45 ° .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter