Гравитационные волны как влияют на человека. Гравитационные волны — открыты! Гравитационные маяки космоса

Свободная поверхность жидкости, находящейся в равновесии в поле тяжести, - плоская. Если под влиянием какого-либо внешнего воздействия поверхность жидкости в каком-нибудь месте выводится из ее равновесного положения, то в жидкости возникает движение. Это движение будет распространяться вдоль всей поверхности жидкости в виде волн, называемых гравитационными, поскольку они обусловливаются действием поля тяжести. Гравитационные волны происходят в основном на поверхности жидкости, захватывая внутренние ее слои тем меньше, чем глубже эти слои расположены.

Мы будем рассматривать здесь такие гравитационные волны, в которых скорость движущихся частиц жидкости настолько мала, что в уравнении Эйлера можно пренебречь членом по сравнению с Легко выяснить, что означает это условие физически. В течение промежутка времени порядка периода колебаний, совершаемых частицами жидкости в волне, эти частицы проходят расстояние порядка амплитуды а волны, поэтому скорость их движения - порядка Скорость v заметно меняется на протяжении интервалов времени порядка и на протяжении расстояний порядка вдоль направления распространения волны ( - длина волны). Поэтому производная от скорости по времени - порядка а по координатам - порядка Таким образом, условие эквивалентно требованию

т. е. амплитуда колебаний в волне должна быть мала по сравнению с длиной волны. В § 9 мы видели, что если в уравнении движения можно пренебречь членом то движение жидкости потенциально. Предполагая жидкость несжимаемой, мы можем воспользоваться поэтому уравнениями (10,6) и (10,7). В уравнении (10,7) мы можем теперь пренебречь членом содержащим квадрат скорости; положив и введя в поле тяжести член получим:

(12,2)

Ось выбираем, как обычно, вертикально вверх, а в качестве плоскости х, у выбираем равновесную плоскую поверхность жидкости.

Будем обозначать - координату точек поверхности жидкости посредством ; является функцией координат х, у и времени t. В равновесии так что есть вертикальное смещение жидкой поверхности при ее колебаниях.

Пусть на поверхность жидкости действует постоянное давление Тогда имеем на поверхности согласно (12,2)

Постоянную можно устранить переопределением потенциала (прибавлением к нему независящей от координат величины Тогда условие на поверхности жидкости примет вид

Малость амплитуды колебаний в волне означает, что смещение мало. Поэтому можно считать, в том же приближении, что вертикальная компонента скорости движения точек поверхности совпадает с производной по времени от смещения Но так что имеем:

В силу малости колебаний можно в этом условии взять значения производных при вместо Таким образом, получаем окончательно следующую систему уравнений, определяющих движение в гравитационной волне:

Будем рассматривать волны на поверхности жидкости, считая эту поверхность неограниченной. Будем также считать, что длина волны мала по сравнению с глубиной жидкости; тогда можно рассматривать жидкость как бесконечно глубокую. Поэтому мы не пишем граничных условий на боковых границах и на дне жидкости.

Рассмотрим гравитационную волну, распространяющуюся вдоль оси и однородную вдоль оси в такой волне все величины не зависят от координаты у. Будем искать решение, являющееся простой периодической функцией времени и координаты х:

где ( - циклическая частота (мы будем говорить о ней просто как о частоте), k - волновой вектор волны, - длина волны. Подставив это выражение в уравнение получим для функции уравнение

Его решение, затухающее в глубь жидкости (т. е. при ):

Мы должны еще удовлетворить граничному условию (12,5), Подставив в него (12,5), найдем связь между частотой b волновым вектором (или, как говорят, закон дисперсии волн):

Распределение скоростей в жидкости получается дифференцированием потенциала по координатам:

Мы видим, что скорость экспоненциально падает по направлению в глубь жидкости. В каждой заданной точке пространства (т. е. при заданных х, z) вектор скорости равномерно вращается в плоскости х, оставаясь постоянным по своей величине.

Определим еще траекторию частиц жидкости в волне. Обозначим временно посредством х, z координаты движущейся частицы жидкости (а не координаты неподвижной точки в пространстве), а посредством - значения х, для равновесного положения частицы. Тогда а в правой части (12,8) можно приближенно написать вместо , воспользовавшись малостью колебаний. Интегрирование по времени дает тогда:

Таким образом, частицы жидкости описывают окружности вокруг точек с радиусом, экспоненциально убывающим по направлению в глубь жидкости.

Скорость U распространения волны равна, как будет показано в § 67, Подставив сюда находим, что скорость распространения гравитационных волн на неограниченной поверхности бесконечно глубокой жидкости равна

Она растет при увеличении длины волны.

Длинные гравитационные волны

Рассмотрев гравитационные волны, длина которых мала по сравнению с глубиной жидкости, остановимся теперь на противоположном предельном случае волн, длина которых велика по сравнению с глубиной жидкости.

Такие волны называются длинными.

Рассмотрим сначала распространение длинных волн в канале. Длину канала (направленную вдоль оси х) будем считать неограниченной Сечение канала может иметь произвольную форму и может меняться вдоль его длины. Площадь поперечного сечения жидкости в канале обозначим посредством Глубина и ширина канала предполагаются малыми по сравнению с длиной волны.

Мы будем рассматривать здесь продольные длинные волны, в которых жидкость движется вдоль канала. В таких волнах компонента скорости вдоль длины канала велика по сравнению с компонентами

Обозначив просто как v и опуская малые члены, мы можем написать -компоненту уравнения Эйлера в виде

а -компоненту - в виде

(квадратичные по скорости члены опускаем, поскольку амплитуда волны по-прежнему считается малой). Из второго уравнения имеем, замечая, что на свободной поверхности ) должно быть

Подставляя это выражение в первое уравнение, получаем:

Второе уравнение для определения двух неизвестных можно вывести методом, аналогичным выводу уравнения непрерывности. Это уравнение представляет собой по существу уравнение непрерывности применительно к рассматриваемому случаю. Рассмотрим объем жидкости, заключенный между двумя плоскостями поперечного сечения канала, находящимися на расстоянии друг от друга. За единицу времени через одну плоскость войдет объем жидкости, равный а через другую плоскость выйдет объем Поэтому объем жидкости между обеими плоскостями изменится на

Гравитационные волны, теоретически предсказанные Эйнштейном еще в 1917 году, всё еще дожидаются своего первооткрывателя.

В конце 1969 года профессор физики Мэрилендского университета Джозеф Вебер сделал сенсационное заявление. Он объявил, что обнаружил волны тяготения, пришедшие на Землю из глубин космоса. До того времени ни один ученый не выступал с подобными претензиями, да и сама возможность детектирования таких волн считалась далеко не очевидной. Однако Вебер слыл авторитетом в своей области, и посему коллеги восприняли его сообщение с полной серьезностью.

Однако вскоре наступило разочарование. Амплитуды волн, якобы зарегистрированных Вебером, в миллионы раз превышали теоретическую величину. Вебер утверждал, что эти волны пришли из закрытого пылевыми облаками центра нашей Галактики, о котором тогда было мало что известно. Астрофизики предположили, что там скрывается гигантская черная дыра, которая ежегодно пожирает тысячи звезд и выбрасывает часть поглощенной энергии в виде гравитационного излучения, а астрономы занялись тщетным поиском более явственных следов этого космического каннибализма (сейчас доказано, что черная дыра там действительно есть, но ведет она себя вполне пристойно). Физики из США, СССР, Франции, Германии, Англии и Италии приступили к экспериментам на детекторах того же типа - и не добились ничего.

Ученые до сих пор не знают, чему приписать странные показания приборов Вебера. Однако его усилия не пропали даром, хотя гравитационные волны до сих пор так и не обнаружены. Несколько установок для их поиска уже построены или строятся, а лет через десять такие детекторы будут выведены и в космос. Вполне возможно, что в не столь отдаленном будущем гравитационное излучение станет такой же наблюдаемой физической реальностью, как и электромагнитные колебания. К сожалению, Джозеф Вебер этого уже не узнает - он умер в сентябре 2000 года.

Что такое волны тяготения

Часто говорят, что гравитационные волны - это распространяющиеся в пространстве возмущения поля тяготения. Такое определение правильно, но неполно. Согласно общей теории относительности, тяготение возникает из-за искривления пространственно-временного континуума. Волны тяготения - это флуктуации пространственно-временной метрики, которые проявляют себя как колебания гравитационного поля, поэтому их часто образно называют пространственно-временной рябью. Гравитационные волны были в 1917 году теоретически предсказаны Альбертом Эйнштейном. В существовании их никто не сомневается, но гравитационные волны всё еще дожидаются своего первооткрывателя.

Источником гравитационных волн служат любые движения материальных тел, приводящие к неоднородному изменению силы тяготения в окружающем пространстве. Движущееся с постоянной скоростью тело ничего не излучает, поскольку характер его поля тяготения не изменяется. Для испускания волн тяготения необходимы ускорения, но не любые. Цилиндр, который вращается вокруг своей оси симметрии, испытывает ускорение, однако его гравитационное поле остается однородным, и волны тяготения не возникают. А вот если раскрутить этот цилиндр вокруг другой оси, поле станет осциллировать, и от цилиндра во все стороны побегут гравитационные волны.

Этот вывод относится к любому телу (или системе тел), несимметричному относительно оси вращения (в таких случаях говорят, что тело имеет квадрупольный момент). Система масс, квадрупольный момент которой меняется со временем, всегда излучает гравитационные волны.

Основные свойства гравитационных волн

Астрофизики предполагают, что именно излучение гравитационных волн, отбирая энергию, ограничивает скорость вращения массивного пульсара при поглощении вещества соседней звезды.


Гравитационные маяки космоса

Гравитационное излучение земных источников чрезвычайно слабо. Стальная колонна массой 10 000 тонн, подвешенная за центр в горизонтальной плоскости и раскрученная вокруг вертикальной оси до 600 об./мин, излучает мощность примерно 10 -24 Вт. Поэтому единственная надежда обнаружить волны тяготения - найти космический источник гравитационного излучения.

В этом плане весьма перспективны тесные двойные звезды. Причина проста: мощность гравитационного излучения такой системы растет в обратной пропорции к пятой степени ее поперечника. Еще лучше, если траектории звезд сильно вытянуты, так как при этом возрастает скорость изменения квадрупольного момента. Совсем хорошо, если двойная система состоит из нейтронных звезд или черных дыр. Такие системы подобны гравитационным маякам в космосе - их излучение имеет периодический характер.

В космосе существуют и «импульсные» источники, порождающие короткие, но чрезвычайно мощные гравитационные всплески. Подобное происходит при коллапсе массивной звезды, предшествующем взрыву сверхновой. Однако деформация звезды должна быть асимметричной, иначе излучение не возникнет. Во время коллапса гравитационные волны могут унести с собой до 10% полной энергии светила! Мощность гравитационного излучения в этом случае составляет порядка 10 50 Вт. Еще больше энергии выделяется при слиянии нейтронных звезд, здесь пиковая мощность достигает 10 52 Вт. Превосходный источник излучения - столкновение черных дыр: их массы могут превышать массы нейтронных звезд в миллиарды раз.

Еще один источник гравитационных волн - космологическая инфляция. Сразу после Большого взрыва Вселенная начала чрезвычайно быстро расширяться, и меньше чем за 10 -34 секунды ее поперечник увеличился с 10 -33 см до макроскопического размера. Этот процесс неизмеримо усилил гравитационные волны, существовавшие до его начала, и их потомки сохранились до сих пор.

Косвенные подтверждения

Первое доказательство существования волн тяготения связано с работами американского радиоастронома Джозефа Тейлора и его студента Расселла Халса. В 1974 году они обнаружили пару обращающихся друг вокруг друга нейтронных звезд (излучающий в радиодиапазоне пульсар с молчаливым компаньоном). Пульсар вращался вокруг своей оси со стабильной угловой скоростью (что бывает далеко не всегда) и поэтому служил исключительно точными часами. Эта особенность позволила измерить массы обеих звезд и выяснить характер их орбитального движения. Оказалось, что период обращения этой двойной системы (около 3 ч 45 мин) ежегодно сокращается на 70 мкс. Эта величина хорошо согласуется с решениями уравнений общей теории относительности, описывающих потерю энергии звездной пары, обусловленную гравитационным излучением (впрочем, столкновение этих звезд случится нескоро, через 300 млн лет). В 1993 году Тейлор и Халс были удостоены за это открытие Нобелевской премии.

Гравитационно-волновые антенны

Как обнаружить гравитационные волны экспериментально? Вебер использовал в качестве детекторов сплошные алюминиевые цилиндры метровой длины с пьезодатчиками на торцах. Их с максимальной тщательностью изолировали от внешних механических воздействий в вакуумной камере. Два таких цилиндра Вебер установил в бункере под полем для гольфа Мэрилендского университета, и один - в Аргоннской национальной лаборатории.

Идея эксперимента проста. Пространство под действием гравитационных волн сжимается и растягивается. Благодаря этому цилиндр вибрирует в продольном направлении, выступая в качестве гравитационно-волновой антенны, а пьезоэлектрические кристаллы переводят вибрации в электрические сигналы. Любое прохождение космических волн тяготения практически одновременно действует на детекторы, разнесенные на тысячу километров, что позволяет отфильтровать гравитационные импульсы от различного рода шумов.

Веберовские датчики были в состоянии заметить смещения торцов цилиндра, равные всего 10 -15 его длины - в данном случае 10 -13 см. Именно такие колебания Веберу удалось обнаружить, о чем он впервые и сообщил в 1959 году на страницах Physical Review Letters . Все попытки повторить эти результаты оказались тщетными. Данные Вебера к тому же противоречат теории, которая практически не позволяет ожидать относительных смещений выше 10 -18 (причем гораздо вероятнее значения менее 10 -20). Не исключено, что Вебер напутал при статистической обработке результатов. Первая попытка экспериментально обнаружить гравитационное излучение закончилась неудачей.

В дальнейшем гравитационно-волновые антенны значительно усовершенствовали. В 1967 году американский физик Билл Фэйрбанк предложил охлаждать их в жидком гелии. Это не только позволило избавиться от большей части тепловых шумов, но и открыло возможность применения сквидов (сверхпроводящих квантовых интерферометров), точнейших сверхчувствительных магнитометров. Реализация этой идеи оказалась сопряжена с множеством технических трудностей, и сам Фэйрбанк до нее не дожил. К началу 1980-х годов физики из Стэнфордского университета построили установку с чувствительностью 10 -18 , однако волн не зарегистрировали. Сейчас в ряде стран действуют ультракриогенные вибрационные детекторы волн тяготения, работающие при температурах лишь на десятые и сотые доли градуса выше абсолютного нуля. Такова, например, установка AURIGA в Падуе. Антенной для нее служит трехметровый цилиндр из алюминиево-магниевого сплава, диаметр которого составляет 60 см, а вес - 2,3 т. Он подвешен в вакуумной камере, охлаждаемой до 0,1 К. Его сотрясения (с частотой порядка 1000 Гц) передаются на вспомогательный резонатор массой в 1 кг, который колеблется с такой же частотой, но много большей амплитудой. Эти вибрации регистрируются измерительной аппаратурой и анализируются с помощью компьютера. Чувствительность комплекса AURIGA - около 10 -20 -10 -21 .

Интерферометры

Еще один способ детектирования волн тяготения основан на отказе от массивных резонаторов в пользу световых лучей. Первыми в 1962 году его предложили советские физики Михаил Герценштейн и Владислав Пустовойт, а двумя годами позже и Вебер. В начале 1970-х сотрудник исследовательской лаборатории корпорации Hughes Aircraft Роберт Форвард (в прошлом аспирант Вебера, в дальнейшем весьма известный писатель-фантаст) построил первый такой детектор с вполне приличной чувствительностью. Тогда же профессор Массачусетского технологического института (MIT) Райнер Вайсс выполнил очень глубокий теоретический анализ возможностей регистрации гравитационных волн с помощью оптических методов.

Эти методы предполагают использование аналогов прибора, с помощью которого 125 лет назад физик Альберт Майкельсон доказал, что скорость света строго одинакова по всем направлениям. В этой установке, интерферометре Майкельсона, пучок света попадает на полупрозрачную пластинку и разделяется на два взаимно перпендикулярных луча, которые отражаются от зеркал, расположенных на одинаковом расстоянии от пластинки. Затем пучки опять сливаются и падают на экран, где возникает интерференционная картина (светлые и темные полосы и линии). Если скорость света зависит от его направления, то при повороте всей установки эта картинка должна измениться, если нет - остаться такой же, что и раньше.

Интерференционный детектор волн тяготения работает сходным образом. Проходящая волна деформирует пространство и изменяет длину каждого плеча интерферометра (пути, по которому свет идет от делителя до зеркала), растягивая одно плечо и сжимая другое. Интерференционная картинка меняется, и это можно зарегистрировать. Но это непросто: если ожидаемое относительное изменение длины плеч интерферометра составляет 10 -20 , то при настольных размерах прибора (как у Майкельсона) оно оборачивается колебаниями амплитудой порядка 10 -18 см. Для сравнения: волны видимого света в 10 трлн раз длиннее! Можно увеличить протяженность плеч до нескольких километров, однако проблемы всё равно останутся. Лазерный источник света должен быть и мощным, и стабильным по частоте, зеркала - идеально плоскими и идеально отражающими, вакуум в трубах, по которым распространяется свет, - максимально глубоким, механическая стабилизация всей системы - воистину совершенной. Короче говоря, интерференционный детектор гравитационных волн - прибор дорогой и громоздкий.

Сегодня самая большая установка такого рода - американский комплекс LIGO (Light Interferometer Gravitational Waves Observatory ). Он состоит из двух обсерваторий, одна из которых находится на тихоокеанском побережье США, а другая - неподалеку от Мексиканского залива. Измерения производят с помощью трех интерферометров (два в штате Вашингтон, один в Луизиане) с плечами четырехкилометровой длины. Установка снабжена зеркальными накопителями света, которые увеличивают ее чувствительность. «С ноября 2005 года все три наших интерферометра работают в нормальном режиме, - рассказал «Популярной механике» представитель комплекса LIGO Питер Солсон, профессор физики Сиракузского университета. - Мы постоянно обмениваемся данными с другими обсерваториями, пытающимися обнаружить гравитационные волны частотой в десятки и сотни герц, возникшие при самых мощных взрывах сверхновых и слиянии нейтронных звезд и черных дыр. Сейчас в строю находится немецкий интерферометр GEO 600 (длина плеч - 600 м), расположенный в 25 км от Ганновера. 300-метровый японский прибор TAMA в настоящее время модернизируется. Трехкилометровый детектор Virgo в окрестностях Пизы подключится к общим усилиям в начале 2007-го, причем на частотах менее 50 Гц он сможет превзойти LIGO. Установки с ультракриогенными резонаторами действуют с возрастающей эффективностью, хотя их чувствительность всё же несколько меньше нашей».

Перспективы

Что же ожидает методы обнаружения гравитационных волн в ближайшем будущем? Об этом «Популярной механике» рассказал профессор Райнер Вайсс: «Через несколько лет в обсерваториях комплекса LIGO установят более мощные лазеры и более совершенные детекторы, что приведет к 15-кратному увеличению чувствительности. Сейчас она составляет 10 -21 (на частотах порядка 100 Гц), а после модернизации превысит 10 -22 . Модернизированный комплекс, Advanced LIGO, в 15 раз увеличит глубину проникновения в космос. В этом проекте активно участвует профессор МГУ Владимир Брагинский, один из пионеров изучения гравитационных волн.

На середину следующего десятилетия запланирован запуск космического интерферометра LISA (Laser Interferometer Space Antenna ) с длиной плеч в 5 миллионов километров, это совместный проект NASA и Европейского космического агентства. Чувствительность этой обсерватории будет в сотни раз выше, чем возможности наземных инструментов. Она в первую очередь предназначена для поиска низкочастотных (10 -4 -10 -1 Гц) гравитационных волн, которые невозможно уловить на поверхности Земли из-за атмосферных и сейсмических помех. Такие волны испускают двойные звездные системы, вполне типичные обитатели Космоса. LISA также сможет регистрировать волны тяготения, возникшие при поглощении черными дырами обыкновенных звезд. А вот для детектирования реликтовых гравитационных волн, несущих информацию о состоянии материи в первые мгновения после Большого взрыва, скорее всего, потребуются более продвинутые космические инструменты. Такая установка, Big Bang Observer , сейчас обсуждается, однако вряд ли ее удастся создать и запустить ранее чем через 30-40 лет».

Что такое гравитационные волны?

Гравитационные волны - изменения гравитационного поля, распространяющиеся подобно волнам. Излучаются движущимися массами, но после излучения отрываются от них и существуют независимо от этих масс. Математически связаны с возмущением метрики пространства-времени и могут быть описаны как «рябь пространства-времени».

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

Гравитационные волны предсказываются общей теорией относительности (ОТО). Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами обсерватории LIGO, на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух чёрных дыр и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов - ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем двойных звёзд за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

Если представить себе наше пространство-время как сеть координат, то гравитационные волны - это возмущения, рябь, которая будет бежать по сетке, когда массивные тела (например, черные дыры) искажают пространство вокруг себя.

Это можно сравнить с землетрясением. Представьте, что вы живете в городе. В нем есть какие-то маркеры, которые создают городское пространство: дома, деревья и так далее. Они неподвижны. Когда где-то поблизости от города происходит крупное землетрясение, колебания доходят до нас - и колебаться начинают даже неподвижные дома и деревья. Вот эти колебания и являются гравитационными волнами; а объекты, которые колеблются, - это пространство и время.

Почему ученые так долго не могли зарегистрировать гравитационные волны?

Конкретные усилия по обнаружению гравитационных волн начались в послевоенный период с несколько наивных устройств, чувствительности которых, очевидно, не могло хватить для регистрации таких колебаний. Со временем стало понятно, что детекторы для поиска должны быть очень масштабные - и они должны использовать современную лазерную технику. Именно с развитием современных лазерных технологий появилась возможность контролировать геометрию, возмущения которой и являются гравитационной волной. Мощнейшее развитие технологий сыграло ключевую роль в этом открытии. Какими бы гениальными ни были ученые, еще 30–40 лет назад сделать это было технически просто невозможно.

Почему обнаружение волн так важно для физики?

Гравитационные волны были предсказаны Альбертом Эйнштейном в общей теории относительности около ста лет назад. Все XX столетие находились физики, которые ставили под сомнение эту теорию, хотя появлялось все больше и больше подтверждений. И наличие гравитационных волн - это такое критическое подтверждение теории.

Кроме того, до регистрации гравитационных волн о том, как ведет себя гравитация, мы знали только на примере небесной механики, взаимодействия небесных тел. Но было понятно, что гравитационное поле имеет волны и пространство-время может деформироваться подобным образом. То, что мы до этого не видели гравитационных волн, было белым пятном в современной физике. Сейчас это белое пятно закрыто, положен еще один кирпич в основание современной физической теории. Это фундаментальнейшее открытие. Ничего сравнимого за последние годы не было.

«В ожидании волн и частиц» - документальный фильм про поиск гравитационных волн (автор Dmitry Zavilgelskiy)

Есть в регистрации гравитационных волн и практический момент. Наверное, после дальнейшего развития технологий можно будет говорить о гравитационной астрономии - о том, чтобы наблюдать следы наиболее высокоэнергичных событий во Вселенной. Но сейчас говорить об этом рано, речь идет только о самом факте регистрации волн, а не о выяснении характеристик объектов, которые генерируют эти волны.

Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса — гравитационно-волновой астрономии.

Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.

Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.

Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пусто-войт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и ТАМА300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.

Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, a VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010-2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 201 5 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.

С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25-30 и 35-40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.

Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

Во-вторых, наблюдения слияний нейтронных звезд дадут много новой, крайне нужной информации об этих объектах. Впервые мы сможем изучать нейтронные звезды так, как физики изучают частицы: наблюдать за их столкновениями, чтобы понять, как они устроены внутри. Загадка строения недр нейтронных звезд волнует и астрофизиков, и физиков. Наше понимание ядерной физики и поведения вещества при сверхвысокой плотности неполно без разрешения этого вопроса. Вполне вероятно, что именно гравитационноволновые наблюдения сыграют здесь ключевую роль.

Считается, что именно слияния нейтронных звезд ответственны за короткие космологические гамма-всплески. В редких случаях удастся одновременно наблюдать событие сразу и в гамма-диапазоне, и на гравитационно-волновых детекторах (редкость связана с тем, что, во-первых, гамма-сигнал сконцентрирован в очень узкий луч, и он не всегда направлен на нас, а во-вторых, от очень далеких событий мы не зарегистрируем гравитационных волн). Видимо, понадобится несколько лет наблюдений, чтобы удалось это увидеть (хотя, как обычно, может повезти, и это произойдет прямо сегодня). Тогда, кроме всего прочего, мы сможем очень точно сравнить скорость гравитации со скоростью света.

Таким образом, лазерные интерферометры вместе будут работать как единый гравитационно-волновой телескоп, приносящий новые знания и астрофизикам, и физикам. Ну а за открытие первых всплесков и их анализ рано или поздно будет вручена заслуженная Нобелевская премия.

Вчера мир потрясла сенсация: ученые наконец-то обнаружили гравитационные волны, существование которых предсказывал Эйнштейн еще сто лет назад. Это прорыв. Искажение пространства-времени (это и есть гравитационные волны - сейчас объясним, что к чему) обнаружили в обсерватории ЛИГО, а одним из ее основателей является - кто бы вы думали? - Кип Торн, автор книги .

Рассказываем, почему открытие гравитационных волн так важно, что сказал Марк Цукерберг и, конечно, делимся историей от первого лица. Кип Торн как никто другой знает, как устроен проект, в чем его необычность и какое значение ЛИГО имеет для человечества. Да-да, все так серьезно.

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн - столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры - очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром»

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны .

И знаете что? Совсем недавно , что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

Так, по мнению ученых, выглядит катастрофа – слияние черных дыр, — .

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие - начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной - объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны - наши первые замечательные образцы», - сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью : «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне. На рисунке из книги «Интерстеллар. Наука за кадром» - пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение - тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Гравитационные волны, проходящие через детектор ЛИГО.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами. Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Фото из книги «Интерстеллар. Наука за кадром»

Сейчас ЛИГО - интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» - когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

Столкновение двух невращающихся черных дыр. Модель из книги «Интерстеллар. Наука за кадром»

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами - как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания - прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

Люди разгадали далеко на все загадки Вселенной. Все еще впереди.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Аппарат BICEP2 . Изображение из книги «Интерстеллар. Наука за кадром»

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след - поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, - в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов - инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Не так уж и далек день, когда люди покинут пределы нашей галактики.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн - самое большое открытие в современной науке. Альберт Эйнштейн - один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет - думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору . Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.