Чем путь отличается от перемещения в физике. Траектория. Пройденный путь. Перемещение. Кинематика вращательного движения

Траектория - кривая (или линия), которую описывает тело при движении. О траектории можно говорить только в том случае, когда тело представлено в виде материальной точки.

Траектория движения может быть:

Стоит отметить, что, если, например, лисица на одном участке будет беспорядочно бегать, то эта траектория будет считаться невидимой, так как там не будет понятно, как именно она двигалась.

Траектория движения в разных системах отсчета будет разной. Об этом можно почитать тут.

Путь

Путь - это физическая величина, которая показывает расстояние, пройденное телом вдоль траектории движения. Обозначается L (в редких случаях S).

Путь является величиной относительной, и его значение зависит от выбранной системы отсчета.

В этом можно убедиться на простом примере: в самолете находится пассажир, который совершает движение от хвоста к носу. Так, его путь в системе отсчета, связанной с самолетом, будет равняться длине этого прохода L1 (от хвоста к носу), а вот в системе отсчета, связанной с Землей, путь будет равняться сумме длин прохода самолета (L1) и пути (L2), который проделал самолет относительно Земли. Поэтому в данном случае весь путь будет выражен так:

Перемещение

Перемещение - это вектор, который соединяет начальное положение движущейся точки с ее конечным положением за определенный промежуток времени.

Обозначается S. Единица измерения 1 метр.

При прямолинейном движении в одном направлении совпадает с траекторией и пройденным путем. В любом другом случае эти величины не совпадают.

Это легко рассмотреть на простом примере. Стоит девочка, а в руках у нее кукла. Она подкидывает ее вверх, и кукла проходит расстояние 2 м и останавливается на мгновение, а затем начинает движение вниз. В таком случае путь будет равен 4 м, а вот перемещение 0. Кукла в данном случае прошла путь 4 м, так как сначала она двигалась вверх 2 м, а потом столько же вниз. Перемещения в этом случае не произошло, так как начальная и конечная точка одна и та же.

Положение материальной точки определяется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета . С ним связывается система отсчета – совокупность системы координат и часов, связанных с телом отсчета.

В декартовой системе координат положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r вектор, проведенный из начала системы координат в данную точку. При движении материальной точки ее координаты с течением времени изменяются.r =r (t) или x=x(t), y=y(t), z=z(t) – кинематические уравнения материальной точки .

Основная задача механики – зная состояние системы в некоторый начальный момент времени t 0 , а также законы, управляющие движением, определить состояния системы во все последующие моменты времени t.

Траектория движения материальной точки – линия, описываемая этой точкой в пространстве. В зависимости от формы траектории различают прямолинейное и криволинейное движение точки. Если траектория точки – плоская кривая, т.е. целиком лежит в одной плоскости, то движение точки называют плоским.

Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной пути Δs и является скалярной функцией времени: Δs=Δs(t). Единица измерения – метр (м)– длина пути, проходимого светом в вакууме за 1/299792458 с.

IV . Векторный способ задания движения

Радиус-вектор r вектор, проведенный из начала системы координат в данную точку. Вектор Δr =r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени называется перемещением (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

Вектором средней скорости < v > называется отношение приращения Δ r радиуса-вектора точки к промежутку времени Δt: (1). Направление средней скорости совпадает с направлением Δr .При неограниченном уменьшении Δt средняя скорость стремиться к предельному значению, которое называется мгновенной скоростью v . Мгновенная скорость это скорость тела в данный момент времени и в данной точке траектории: (2). Мгновенная скоростьv есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени.

Для характеристики быстроты изменения скорости v точки в механике вводится векторная физическая величина, называемая ускорением.

Средним ускорением неравномерного движения в интервале от t до t+Δt называется векторная величина, равная отношению изменения скорости Δv к интервалу времени Δt:

Мгновенным ускорением а материальной точки в момент времени t будет предел среднего ускорения:(4). Ускорениеа есть векторная величина, равная первой производной скорости по времени.

V. Координатный способ задания движения

Положение точки М можно характеризовать радиус – вектором r или тремя координатами x, y и z: М(x,y,z). Радиус - вектор можно представить в виде суммы трех векторов, направленных вдоль осей координат: (5).

Из определения скорости (6). Сравнивая (5) и (6) имеем:(7). Учитывая (7) формулу (6) можно записать(8). Модуль скорости можно найти:(9).

Аналогично для вектора ускорения:

(10),

(11),

    Естественный способ задания движения (описание движения с помощью параметров траектории)

Движение описывается формулой s=s(t). Каждая точка траектории характеризуется своим значением s. Радиус – вектор является функцией от s и траектория может быть задана уравнением r =r (s). Тогда r =r (t) можно представить как сложную функцию r . Продифференцируем (14). Величина Δs – расстояние между двумя точками вдоль траектории, |Δr | - расстояние между ними по прямой линии. По мере сближения точек разница уменьшается. , гдеτ – единичный вектор, касательный к траектории. , тогда (13) имеет видv =τ v (15). Следовательно скорость направлена по касательной к траектории.

Ускорение может быть направлено под любым углом к касательной к траектории движения. Из определению ускорения (16). Еслиτ - касательный к траектории, то - вектор перпендикулярный этой касательной, т.е. направлен по нормали. Единичный вектор, в направлении нормали обозначаетсяn . Значение вектора равно 1/R, где R – радиус кривизны траектории.

Точка, отстоящая от траектории на расстоянии и R в направлении нормали n , называется центром кривизны траектории. Тогда (17). Учитывая вышеизложенное формулу (16) можно записать:(18).

Полное ускорение состоит из двух взаимно перпендикулярных векторов: , направленного вдоль траектории движения и называемого тангенциальным, и ускорения, направленного перпендикулярно траектории по нормали, т.е. к центру кривизны траектории и называемого нормальным.

Абсолютное значение полного ускорения найдем: (19).

Лекция 2 Движение материальной точки по окружности. Угловое перемещение, угловая скорость, угловое ускорение. Связь между линейными и угловыми кинематическими величинами. Векторы угловой скорости и ускорения.

План лекции

    Кинематика вращательного движения

При вращательном движении мерой перемещения всего тела за малый промежуток времени dt служит вектор элементарного поворота тела. Элементарные повороты (обозначаются или) можно рассматривать какпсевдовекторы (как бы).

Угловое перемещение - векторная величина, модуль которой равен углу поворота, а направление совпадает с направлением поступа­тельного движения правого винта (направленный вдоль оси вращения так, что если смотреть с его конца, то вращение тела кажется происходящим против часовой стрелки). Единица углового перемещения – рад.

Быстроту изменения углового перемещения с течением времени характеризует угловая скорость ω . Угловая скорость твердого тела – векторная физическая величина, характеризующая быстроту изменения углового перемещения тела с течением времени и равная угловому перемещению, совершаемому телом за единицу времени:

Направлен вектор ω вдоль оси вращения в ту же сторону, что и (по правилу правого винта). Единица угловой скорости- рад/с

Быстроту изменения угловой скорости с течением времени характеризует угловое ускорение ε

(2).

Направлен вектор ε вдоль оси вращения в ту же сторону, что и dω, т.е. при ускоренном вращении , при замедленном.

Единица углового ускорения – рад/с 2 .

За время dt произвольная точка твердого тела А переместиться на dr , пройдя путь ds . Из рисунка видно, что dr равно векторному произведению углового перемещения на радиус – вектор точки r : dr =[ · r ] (3).

Линейная скорость точки связана с угловой скоростью и радиусом траектории соотношением:

В векторном виде формулу для линейной скорости можно написать как векторное произведение: (4)

По определению векторного произведения его модуль равен , где - угол между векторами и, а направление совпадает с направлением поступательного движения правого винта при его вращении от к .

Продифференцируем (4) по времени:

Учитывая, что - линейное ускорение,- угловое ускорение, а- линейная скорость, получим:

Первый вектор в правой части направлен по касательной к траектории точки. Он характеризует изменение модуля линейной скорости. Следовательно, этот вектор – касательное ускорение точки: a τ =[ ε · r ] (7). Модуль касательного ускорения равен a τ = ε · r . Второй вектор в (6) направлен к центру окружности и характеризует изменение направления линейной скорости. Этот вектор – нормальное ускорение точки:a n =[ ω · v ] (8). Модуль его равен a n =ω·v или учитывая, что v = ω· r , a n = ω 2 · r = v 2 / r (9).

    Частные случаи вращательного движения

При равномерном вращении: , следовательно .

Равномерное вращение можно характеризовать периодом вращения Т - временем, за которое точка совершает один полный оборот,

Частота вращения - число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени: (11)

Единица частоты вращения - герц (Гц).

При равноускоренном вращательном движении :

Лекция 3 Первый закон Ньютона. Сила. Принцип независимости действующих сил. Результирующая сила. Масса. Второй закон ньютона. Импульс. Закон сохранения импульса. Третий закон Ньютона. Момент импульса материальной точки, момент силы, момент инерции.

План лекции

    Первый закон Ньютона

    Второй закон Ньютона

    Третий закон Ньютона

    Момент импульса материальной точки, момент силы, момент инерции

    Первый закон Ньютона. Масса. Сила

Первый закон Ньютона: Существуют такие системы отсчета, относительно которых тела движутся прямолинейно и равномерно или покоятся, если на них не действуют силы или действие сил скомпенсировано.

Первый закон Ньютона выполняется только в инерциальной системе отсчёта и утверждает существование инерциальной системе отсчёта.

Инерция – это свойство тел стремиться сохранять скорость неизменной.

Инертностью называют свойство тел препятствовать изменению скорости под действием приложенной силы.

Масса тела – это физическая величина являющаяся количественной мерой инертности, это скалярная аддитивная величина. Аддитивность массы состоит в том, что масса системы тел всегда равна сумме масс каждого тела в отдельности. Масса – основная единица системы «СИ».

Одной из форм взаимодействия является механическое взаимодействие . Механическое взаимодействие вызывает деформацию тел, а также изменение их скорости.

Сила – это векторная величина являющаяся мерой механического воздействия на тело со стороны других тел, или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры (деформируется). Сила характеризуется модулем, направлением действия, точкой приложения к телу.

Если брать во внимание физические процессы в бытовой сфере, то многие из них кажутся очень погожими. Поэтому понятия путь и перемещение воспринимаются как одно и то же, разница заключается только в том, что первое – это описание действия, а второе – это результат действия. Но если обратиться за уточнением к информационным источникам можно будет сразу же найти существенную разницу между данными операциями.

Что собой представляет путь?

Путь – это движение в результате, которого происходит изменение места расположения предмета или человека. Эта величина относится к скалярным, поэтому не имеет направления, но с её помощью можно определить пройденное расстояние.

Путь может выполняться следующими образами:

  • По прямой линии.
  • Криволинейно.
  • По кругу.
  • Возможны другие способы (например, зигзагообразная траектория).

Путь никогда не может быть отрицательным и убывать в течение времени. Измерение пути осуществляется в метрах. Чаще всего, в физике для обозначения пути используется буква S , в редких случаях используют букву L. С помощью пути нельзя предвидеть, где будет находиться нужный нам предмет в определённый момент времени.

Особенности перемещения

Перемещение – это разность между начальной и конечной точкой расположения человека или предмета в пространстве после того как был преодолён какой-то путь.

Значение перемещения всегда является положительным, а также имеет чёткое направление.

Совпадение между перемещением и путём возможно только в том случае если путь был осуществлён по прямой линии, а направление при этом не изменялось.

С помощью перемещения можно рассчитать, где находился человек или предмет в определённый этап времени.

Для обозначения перемещения используют букву S, но поскольку перемещение является векторной величиной то над данной буквой ставится стрелочка →, которая и указывает на то, что перемещение – это вектор. К сожалению, увеличивает путаницу между путём и перемещением ещё тот факт, что оба понятия также можно обозначить буквой L.

Что общего между понятиями путь и перемещение?

Несмотря на то что путь и перемещение – это абсолютно разные понятия существуют определённые элементы, которые способствуют тому, что понятия путают:

  1. Путь и перемещение всегда могут быть только положительными величинами.
  2. Для обозначения пути и перемещения может использоваться одна и та самая буква L.

Даже учитывая факт, что у этих понятий имеется только два общих элемента их значение настолько велико, что заставляет путаться многих людей. Особенно возникают проблемы у школьников во время изучения физики.

Основные отличия между понятиями путь и перемещение?

У данных понятий имеется ряд отличий, которые всегда помогут определить, какая величина находиться перед вами, путь или перемещение:

  1. Путь – это первичное понятие, а перемещение вторичное. К примеру, перемещение определяет разницу между начальной и конечной точкой расположения человека в пространстве после преодоления какого-то пути. Соответственно, нельзя получить величину перемещения не использовав изначально путь.
  2. Для пути играет огромную роль начало движения, а для определения перемещения начало движения абсолютно не нужно.
  3. Основная разница между данными величинами заключается в том, что путь не имеет направления, а у перемещения оно имеется. К примеру, путь осуществляется только прямо – вперёд, а перемещение допускает и движение назад.
  4. Кроме того, понятия отличаются по виду. Путь относится к скалярной величине, а перемещение к векторной.
  5. Метод исчисления. К примеру, путь исчисляют с помощью общего пройденного отрезка, а перемещение, в свою очередь, исчисляется с помощью изменения места расположения объекта в пространстве.
  6. Путь никогда не может быть равен нулю, а в перемещении допускается значение равное нулю.

Изучив эти отличия, можно сразу же понять в чём заключается разница между понятиями путь и перемещение, и уже больше никогда их не путать.

Разница между путём и перемещением на примерах

Для того чтобы быстрее понять разницу между путём и перемещением можно использовать определённые примеры:

  1. Машиной было совершено движение на 2 метра вперёд и на 2 метра назад. Путь – это сумма всего пройденного расстояния, соответственно она составляет 4 метра. А перемещение – это начальная и конечная точка, поэтому в данном случае оно равно нулю.
  2. К тому же разницу между путём и перемещением можно рассмотреть на собственном опыте. Необходимо встать на старт 400-метровой беговой дорожки и пробежать два круга (второй круг закончится в начальной точке). В результате получается, что путь составил 800 метров (400+400), а перемещение равно 0, поскольку начальная и конечная точки совпадают.
  3. Брошенный вверх мячик достиг высоты в 15 метров, а затем упал на Землю. В данном случае путь будет равен 30 метров, поскольку плюсуются 15 метров вверх и 15 метров вниз. А перемещение будет равно 0, из-за того, что мячик вернулся в исходное положение.

Смещение, сдвиг, передвижение, миграция, движение, перестановка, перегруппировка, перенос, транспортировка, переход, переезд, передача, путешествие; сдвигание, подвигание, телекинез, эпейрофорез, перебазирование, перекатывание, переваливание,… … Словарь синонимов

ПЕРЕМЕЩЕНИЕ, перемещения, ср. (книжн.). 1. Действие по гл. переместить перемещать. Перемещение по службе. 2. Действие и состояние по гл. переместиться перемещаться. Перемещение пластов земной коры. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

В механике, вектор, соединяющий положения движущейся точки в начале и в конце нек рого промежутка времени; направлен вектор П. вдоль хорды траектории точки. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М.… … Физическая энциклопедия

ПЕРЕМЕСТИТЬ, ещу, естишь; ещённый (ён, ена); сов., кого что. Поместить, перевести в другое место. П. декорации. П. бригаду на другой участок. Перемещённые лица (лица, насильственно переселённые из своей страны). Толковый словарь Ожегова. С.И.… … Толковый словарь Ожегова

- (relocation) Переезд офиса, предприятия и т.п. на другое место. Часто его причиной является слияние, поглощение. Иногда сотрудники получают пособие на переезд (relocation allowance), которое должно стимулировать их остаться на службе в данной… … Словарь бизнес-терминов

перемещение - — Тематики электросвязь, основные понятия EN redeployment … Справочник технического переводчика

Перемещение, - Перемещение, мм, величина изменения положения какой либо точки элемента оконного блока (как правило, импоста коробки или вертикальных брусков створок) в направлении нормали к плоскости изделия под воздействием ветровой нагрузки. Источник: ГОСТ… …

перемещение - Миграция материала в виде раствора или взвеси из одного почвенного горизонта в другой … Словарь по географии

перемещение - 3.14 перемещение (transfer) (в отношении места хранения): Изменение места хранения документа. Источник: ГОСТ Р ИСО 15489 1 2007: Система стандартов по информации … Словарь-справочник терминов нормативно-технической документации

перемещение - ▲ изменение положение, в пространстве < > неподвижный перемещение изменение положения в пространстве; преобразование фигуры, сохраняющее расстояния между точками фигуры; движение в другое место. передвижение. поступательное движение… … Идеографический словарь русского языка

Книги

  • ГЭСНм 81-03-40-2001. Часть 40. Дополнительное перемещение оборудования и материальных ресурсов , . Государственные сметные нормативы. Государственные элементные сметные нормы на монтаж оборудования (далее - ГЭСНм) предназначены для определения потребности в ресурсах (затрат труда рабочих,…
  • Перемещение людей и грузов в околоземном пространстве посредством технической феррографитации , Р. А. Сизов. Настоящая публикация является вторым прикладным изданием к книгам Р. А. Сизова "Материя, Антиматерия и Энергосреда - Физическая Триада реального Мира", в котором на основе обнаруженного…