Для этих углеводородов характерны реакции присоединения. Свойства непредельных углеводородов. Типы химических реакций в органической химии












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: познакомить с химическими свойствами предельных углеводородов, научить составлять уравнения химических реакций, указывать условия их протекания. Продолжить формирование мировоззренческих понятий: о познаваемости природы, причинно-следственной зависимости между составом, строением, свойствами и применением предельных углеводородов.

Тип урока: изучение нового материала.

Вид урока: беседа, лекция.

Методы урока:

Обучения – диалогический, показательный.

Преподавания – информационно-сообщающий, объяснительный.

Оснащение урока: компьютер, проектор, свеча, спички.

1. Актуализация.

1. Какие органические вещества относят к углеводородам? (Углеводороды – это органические соединения, состоящие из двух элементов: углерода и водорода.)

2. Как называют предельные углеводороды по международной номенклатуре? (Алканы.)

3. Назовите общую формулу алканов. (C n H 2n+2 .)

4. Напишите формулы алканов, имеющих в своем составе атомов углерода: а) 16; б) 21; в) 23. (С 16 Н 34 , С 21 Н 44 , С 23 Н 48 .)

5. Укажите вид гибридизации, характерный для предельных углеводородов. (sp 3 ибридизация .)

6. Назовите угол и длину связи, характерные для алканов. (Угол – 109°28" и длина углерод-углеродной связи – 0,154 нм.)

2. Изучение нового материала.

В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами, с концентрированными и расплавленными щелочами, не окисляются сильными окислителями - перманганатом калия KMnО 4 и т.п.

Химическая устойчивость алканов объясняется высокой прочностью s -связей С-С и С-Н, а также их неполярностью. Неполярные связи С-С и С-Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характерны радикальные реакции, в результате которых получаются соединения, где атомы водорода замещены на другие атомы или группы атомов.

Следовательно, алканы вступают в реакции, протекающие по механизму радикального замещения, обозначаемого символом S R (от англ, substitution radicalic). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

2.1. Галогенирование.

При взаимодействии алканов с галогенами (хлором и бромом) под действием УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов.

СН 4 +CL 2 ->CH 3 CL- хлорметан

CH 3 CL + CL 2 ->CH 2 CL 2 - дихлорметан

CH 2 CL 2 + CL 2 -> CHCL 3 - трихлорметан

CHCL 3 + CL 2 -> CCL 4 -тетрохлорметан

2.2. Нитрование.

Несмотря на то, что в обычных условиях алканы не взаимодействуют с концентрированной азотной кислотой, при нагревании их до 140°С с разбавленной (10%-ной) азотной кислотой под давлением осуществляется реакция нитрования – замещение атома водорода нитрогруппой (реакция М.И.Коновалова). В реакцию нитрования вступают все алканы, однако скорость реакции и выходы нитросоединений низкие. Наилучшие результаты наблюдаются с алканами, содержащими третичные углеродные атомы.

CH 3 -CH 3 + HNO 3 -> CH 3 -CH 2 -NO 2 + H 2 O.

2.3. Изомеризация.

Под влиянием катализаторов при нагревании углеводороды нормального строения подвергаются изомеризации - перестройке углеродного скелета с образованием алканов разветвленного строения.

2.4. Термическое разложение.

СН 4 ->C + 2H 2

C 2 H 2 ->2C +H 2

Крекинг - при высокой температуре в присутствии катализаторов предельные углеводороды подвергаются расщеплению, которое называется крекингом. При крекинге происходит гомолитический разрыв углерод - углеродных связей с образованием насыщенных и ненасыщенных углеводородов с более короткими цепями.

C 8 H 18 -> C 4 H 10 + С 4 Н 8

Эти реакции имеют большое промышленное значение. Таким путем высококипящие фракции нефти (мазут) превращают в бензин, керосин и другие ценные продукты.

Повышение температуры процесса ведет к более глубоким распадам углеводородов и, в частности, к дегидрированию, т.е. к отщеплению водорода. Так, метан при 1500°C приводит к ацетилену.

2CH 4 -> C 2 H 2 + 3H 2

2.5. Окисление.

В обычных условиях алканы устойчивы к действию кислорода и окислителей. При поджигании на воздухе алканы горят, превращаясь в двуокись углерода и воду и выделяя большое количество тепла.

CH 4 + 2O 2 -> CO 2 + 2H 2 O

C 5 H 12 + 8O 2 -> 5CO 2 + 6H 2 O

С n Н 2n +2 + (Зn+1)/2О 2 = nСО 2 + (n+1)Н 2 О.

(Демонстрация горения свечи)

3. Применение (самостоятельная работа с текстом учебника).

Первый в ряду алканов – метан – является основным компонентом природных и попутных газов и широко используется в качестве промышленного и бытового газа. Перерабатывается в промышленности в ацетилен, газовую сажу, фторо- и хлоропроизводные.

Низшие члены гомологического ряда используются для получения соответствующих непредельных соединений реакцией дегидрирования. Смесь пропана и бутана используется в качестве бытового топлива.

Средние члены гомологического ряда применяются как растворители и моторные топлива. Высшие алканы используются для производства высших жирных кислот, синтетических жиров, смазочных масел и т.д.

4. Домашнее задание: параграф 11, выполнить упр. 4, 5.

Основой всех органических веществ являются соединения, которые состоят из двух элементов – углерода и водорода. От такого достаточно простого состава они и получили своё название – углеводороды. Это класс соединений, разнообразных по структуре, химическим связям, свойствам. Их в свою очередь, делят на группы – ряды:

1) Насыщенные углеводороды

а) Алканы

2) Ненасыщенные углеводороды:

а) Алкены

б) Алкины

Все углеводороды не имеют цвета. При нормальных условиях они могут находиться в твёрдом, жидком или газообразном состояниях. Их агрегатное состояние зависит от массы молекул вещества. Чем больше масса молекул, тем труднее разорвать связи между ними, так как с увеличением массы, как правило, увеличивается притяжение между молекулами, и затрудняются процессы плавления и испарения. Молекулярная масса оказывает влияние и на плотность вещества: с её увеличением плотность углеводорода увеличивается.

Общим свойством всех углеводородов, как и всех органических соединений, является горение – окисление кислородом. Например, в газовых плитах горит один из компонентов природного газа – пропан.

При сжигании пластмассовых предметов выделяется много ядовитых веществ, которые загрязняют атмосферу. Вдыхать дым костра, в котором сжигаются полимеры и пластмассы, чрезвычайно вредно.

Источником природных алканов являются нефть, попутные и природные газы. Природный газ содержит более 90% метана. Кроме метана, в нем содержится этан, пропан, бутан, немного азота, углекислого газа, иногда сероводород.

Нефть

Нефть представляет собой смесь различных алканов и других соединений. В ней присутствуют жидкие, твёрдые, а также нередко газообразные углеводороды. Газообразные углеводороды, растворённые в нефти, в недрах Земли находятся под давлением, а при выходе на поверхность они отделяются от жидкой нефти и образуют так называемые попутные газы. Они содержат меньше метана, а доля этана, пропана, бутана в них значительно больше, чем в природном газе. Ясно, что попутные газы не менее ценны, чем природный газ. И тем не менее с давних времён попутные газы на промыслах сжигают. В результате не только уничтожается ценное сырьё, но и наносится урон окружающей среде.

Алкены и алкины в природе практически не встречаются. Их получают из акланов отщеплением водорода в присутствии катализатора, например никеля. Такие реакции называются дегидрированием.

Природный газ является наиболее экономичным и экологичным топливом. Он используется на ТЭЦ, заводах, в быту. Жидкие углеводороды применяют в качестве горючего.

Как насыщенные, так и ненасыщенные углеводороды нужны не только в энергетике, но и в химической промышленности. Они служат сырьём для получения многих необходимых веществ: пластмасс, синтетических волокон, лаков и красок, лекарств, ацетона, спирта, сажы, водорода и других.

Для получения горючего топлива нефть подвергают переработке способом перегонки. Её сущность заключается в том, что при нагревании нефти до определённой температуры один за другим углеводороды испаряются, а затем конденсируются. Так получают горючее. А остатки перегонки используют в химической промышленности и для покрытия дорог.

ДИЕНОВЫЕ УГЛЕВОДОРОДЫ (АЛКАДИЕНЫ)

Диеновые углеводороды или алкадиены – это непредельные углеводороды, содержащие две двойные углерод - углеродные связи. Общая формула алкадиенов C n H 2 n -2 .
В зависимости от взаимного расположения двойных связей диены подразделяются на три типа:

1) углеводороды с кумулированными двойными связями, т.е. примыкающими к одному атому углерода. Например, пропадиен или аллен CH 2 =C=CH 2 ;

2) углеводороды с изолированными двойными связями, т.е разделенными двумя и более простыми связями. Например, пентадиен -1,4 CH 2 =CH–CH 2 –CH=CH 2 ;

3) углеводороды с сопряженными двойными связями, т.е. разделенными одной простой связью. Например, бутадиен -1,3 или дивинил CH 2 =CH–CH=CH 2 , 2-метилбутадиен -1,3 или изопрен

2) дегидрированием и дегидратацией этилового спирта при пропускании паров спирта над нагретыми катализаторами (метод акад. С.В.Лебедева)

2CH 3 CH 2 OH –– ~ 450 ° С;ZnO,Al2O3 ® CH 2 =CH–CH=CH 2 + 2H 2 O + H 2

Физические свойства

Химические свойства

Атомы углерода в молекуле бутадиена-1,3 находятся в sp 2 - гибридном состоянии, что означает расположение этих атомов в одной плоскости и наличие у каждого из них одной p- орбитали, занятой одним электроном и расположенной перпендикулярно к упомянутой плоскости.


a)

b)
Схематическое изображение строения молекул дидивинила (а) и вид модели сверху (b).
Перекрывание электронных облаков между С 1 –С 2 и С 3 –С 4 больше, чем между С 2 –С 3 .

p- Орбитали всех атомов углерода перекрываются друг с другом, т.е. не только между первым и вторым, третьим и четвертым атомами, но и также между вторым и третьим. Отсюда видно, что связь между вторым и третьим атомами углерода не является простой s- связью, а обладает некоторой плотностью p- электронов, т.е. слабым характером двойной связи. Это означает, что s- электроны не принадлежат строго определенным парам атомов углерода. В молекуле отсутствуют в классическом понимании одинарные и двойные связи, а наблюдается делокализация p- электронов, т.е. равномерное распределение p- электронной плотности по всей молекуле с образованием единого p- электронного облака.
Взаимодействие двух или нескольких соседних p- связей с образованием единого p- электронного облака, в результате чего происходит передача взаимовлияния атомов в этой системе, называется эффектом сопряжения .
Таким образом, молекула бутадиена -1,3 характеризуется системой сопряженных двойных связей.
Такая особенность в строении диеновых углеводородов делает их способными присоединять различные реагенты не только к соседним углеродным атомам (1,2- присоединение), но и к двум концам сопряженной системы (1,4- присоединение) с образованием двойной связи между вторым и третьим углеродными атомами. Отметим, что очень часто продукт 1,4- присоединения является основным.
Рассмотрим реакции галогенирования и гидрогалогенирования сопряженных диенов.

Полимеризация диеновых соединений

В упрощенном виде реакцию полимеризации бутадиена -1,3 по схеме 1,4 присоединения можно представить следующим образом:

––––® .

В полимеризации участвуют обе двойные связи диена. В процессе реакции они разрываются, пары электронов, образующие s- связи разобщаются, после чего каждый неспаренный электрон участвует в образовании новых связей: электроны второго и третьего углеродных атомов в результате обобщения дают двойную связь, а электроны крайних в цепи углеродных атомов при обобщении с электронами соответствующих атомов другой молекулы мономера связывают мономеры в полимерную цепочку.

Элементная ячейка полибутадиена представляется следующим образом:

.

Как видно, образующийся полимер характеризуется транс - конфигурацией элементной ячейки полимера. Однако наиболее ценные в практическом отношении продукты получаются при стереорегулярной (иными словами, пространственно упорядоченной) полимеризации диеновых углеводородов по схеме 1,4- присоединения с образованием цис - конфигурации полимерной цепи. Например, цис- полибутадиен

.

Натуральный и синтетический каучуки

Натуральный каучук получают из млечного сока (латекса) каучуконосного дерева гевеи, растущего в тропических лесах Бразилии.

При нагревании без доступа воздуха каучук распадается с образованием диенового углеводорода – 2- метилбутадиена-1,3 или изопрена. Каучук – это стереорегулярный полимер, в котором молекулы изопрена соединены друг с другом по схеме 1,4- присоединения с цис - конфигурацией полимерной цепи:

Молекулярная масса натурального каучука колеблется в пределах от 7 . 10 4 до 2,5 . 10 6 .

транс - Полимер изопрена также встречается в природе в виде гуттаперчи.

Натуральный каучук обладает уникальным комплексом свойств: высокой текучестью, устойчивостью к износу, клейкостью, водо- и газонепроницаемостью. Для придания каучуку необходимых физико-механических свойств: прочности, эластичности, стойкости к действию растворителей и агрессивных химических сред – каучук подвергают вулканизации нагреванием до 130-140°С с серой. В упрощенном виде процесс вулканизации каучука можно представить следующим образом:

Атомы серы присоединяются по месту разрыва некоторых двойных связей и линейные молекулы каучука "сшиваются" в более крупные трехмерные молекулы – получается резина, которая по прочности значительно превосходит невулканизированный каучук. Наполненные активной сажей каучуки в виде резин используют для изготовления автомобильных шин и других резиновых изделий.

В 1932 году С.В.Лебедев разработал способ синтеза синтетического каучука на основе бутадиена, получаемого из спирта. И лишь в пятидесятые годы отечественные ученые осуществили каталитическую стереополимеризацию диеновых углеводородов и получили стереорегулярный каучук, близкий по свойствам к натуральному каучуку. В настоящее время в промышленности выпускают каучук,

Химические свойства алканов

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом S R .

1. Реакции замещения

В реакциях данного типа происходит разрыв связей углерод-водород

RH + XY → RX + HY

Галогенирование

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

Механизм реакции

Разберем механизм реакции свободнорадикального замещения на примере взаимодействия метана и хлора. Он состоит из трех стадий:

  1. инициирование (или зарождение цепи) - процесс образования свободных радикалов под действии энергии извне – облучения УФ-светом или нагревания. На этой стадии молекула хлора претерпевает гомолитический разрыв связи Cl-Cl c образованием свободных радикалов:

Свободными радикалами, как можно видеть из рисунка выше, называют атомы или группы атомов с одним или несколькими неспаренными электронами (Сl , Н, СН 3 , СН 2 и т.д.);

2. Развитие цепи

Эта стадия заключается во взаимодействии активных свободных радикалов с неактивными молекулами. При этом образуются новые радикалы. В частности, при действии радикалов хлора на молекулы алкана, образуется алкильный радикал и хлороводород. В свою очередь, алкильный радикал, сталкиваясь с молекулами хлора, образует хлорпроизводное и новый радикал хлора:

3) Обрыв (гибель) цепи:

Происходит в результате рекомбинации двух радикалов друг с другом в неактивные молекулы:

2. Реакции окисления

В обычных условиях алканы инертны по отношению к таким сильным окислителям, как концентрированная серная и азотная кислоты, перманганат и дихромат калия (КMnО 4 , К 2 Cr 2 О 7).

Горение в кислороде

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

CH 4 + 2O 2 = CO 2 + 2H 2 O

Б) неполное сгорание при недостатке кислорода:

2CH 4 + 3O 2 = 2CO + 4H 2 O

CH 4 + O 2 = C + 2H 2 O

Каталитическое окисление кислородом

В результате нагревания алканов с кислородом (~200 о С) в присутствии катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

3. Термические превращения алканов

Крекинг

Крекинг (от англ. to crack — рвать) — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

CH 3 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 → CH 3 -CH 2 -CH 2 -CH 3 + CH 3 -CH=CH 2

Крекинг бывает термический и каталитический. Для осуществления каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Дегидрирование

Отщепление водорода происходит в результате разрыва связей С-Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

2CH 4 → C 2 H 2 + 3H 2

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

СН 4 → С + 2Н 2

При дегидрировании остальных алканов образуются алкены:

C 2 H 6 → C 2 H 4 + H 2

При дегидрировании н -бутана образуются бутен-1 и бутен-2 (последний в виде цис- и транс -изомеров):

Дегидроциклизация

Изомеризация

Химические свойства циклоалканов

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех, в целом практически идентичны свойствам алканов. Для циклопропана и циклобутана, как ни странно, характерны реакции присоединения. Это обусловлено большим напряжением внутри цикла, которое приводит к тому, что данные циклы стремятся разорваться. Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород:

Химические свойства алкенов

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH 3 -СН=СН 2 + Н 2 → CH 3 -СН 2 -СН 3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Галогенирование

Алкены легко вступаю в реакцию присоединения с бромом как в водном растворе, так и с органических растворителях. В результате взаимодействия изначально желтые растворы брома теряют свою окраску, т.е. обесцвечиваются.

СН 2 =СН 2 + Br 2 → CH 2 Br-CH 2 Br

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH 2 =CH 2 + H 2 O → CH 3 -CH 2 -OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

C n H 2n + (3/2)nO 2 → nCO 2 + nH 2 O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO 4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

C 2 H 4 + 2KMnO 4 + 2H 2 O → CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O (нагревание)

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Химические свойства алкадиенов

Реакции присоединения

Например, присоединение галогенов:

Бромная вода обесцвечивается.

В обычных условиях присоединение атомов галогена происходит по концам молекулы бутадиена-1,3, при этом π-связи разрываются, к крайним атомам углерода присоединяются атомы брома, а свободные валентности образуют новую π-связь. Таким образом, как бы происходит «перемещение» двойной связи. При избытке брома может быть присоединена еще одна его молекула по месту образовавшейся двойной связи.

Реакции полимеризации

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Галогенирование

Поскольку тройная связь молекул алкинов состоит из одной более прочной сигма-связи и двух менее прочных пи-связей они способны присоединять как одну, так и две молекулы галогена. Присоединение одной молекулой алкина двух молекул галогена протекает по электрофильному механизму последовательно в две стадии:

Гидрогалогенирование

Присоединение молекул галогеноводорода, также протекает по электрофильному механизму и в две стадии. В обоих стадиях присоединение идет в соответствии с правилом Марковникова:

Гидратация

Присоединение воды к алкинами происходит в присутсвии солей рути в кислой среде и называется реакцией Кучерова.

В результате гидратации присоединения воды к ацетилену ообразуется ацетальдегид (укусный альдегид):

Для гомологов ацетилена присоединение воды приводит к образованию кетонов:

Гидрирование алкинов

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

Тримеризация алкинов

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

Димеризация алкинов

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

Окисление алкинов

Алкины сгорают в кислороде:

С n H 2n-2 + (3n-1)/2 O 2 → nCO 2 + (n-1)H 2 O

Взаимодействие алкинов с основаниями

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

HC≡CH + 2NaNH 2 → NaC≡CNa + 2NH 3 ,

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется при синтезе более сложных органических соединений с тройной связью:

СН 3 -C≡CН + NaNН 2 → СН 3 -C≡CNa + NН 3

СН 3 -C≡CNa + CH 3 Br → СН 3 -C≡C-СН 3 + NaBr

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Реакции замещения

Галогенирование

Нитрование

Лучше всего реакция нитрования протекает под действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

Алкилирование

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.<

Реакции присоединения

Гидрирование

Присоединение хлора

Протекает по радикальному механизму при интенсивном облучении ультрафиолетовым светом:

Подобным образом реакция может протекать только с хлором.

Реакции окисления

Горение

2С 6 Н 6 + 15О 2 = 12СО 2 + 6Н 2 О+Q

Неполное окисление

Бензольное кольцо устойчиво к действию таких окислителей как KMnO 4 и K 2 Cr 2 O 7 . Реакция не идет.

Деление заместителей в бензольном кольце на два типа:

Рассмотрим химические свойства гомологов бензола на примере толуола.

Химические свойства толуола

Галогенирование

Молекулу толуола можно рассматривать, как состоящую из фрагментов молекул бензола и метана. Поэтому логично предположить, что химические свойства толуола должны в какой-то мере сочетать химические свойства этих двух веществ, взятых по отдельности. В частyости, именно это и наблюдается при его галогенировании. Мы уже знаем, что бензол вступает в реакцию замещения с хлором по электрофильному механизму, и для осуществления данной реакции необходимо использовать катализаторы (галогениды алюминия или трехвалентного железа). В то же время метан так же способен реагировать с хлором, но уже по свободно-радикальному механизму, для чего требуется облучение исходной реакционной смеси УФ-светом. Толуол, в зависимости от того, в каких условиях подвергается хлорированию, способен дать либо продукты замещения атомов водорода в бензольном кольце – для это нужно использовать те же условия что и при хлорировании бензола, либо продукты замещения атомов водорода в метильном радикале, если на него, как и на метан действовать хлором при облучении ультрафиолетом:

Как можно заметить хлорирование толуола в присутствии хлорида алюминия привело к двум разным продуктам – орто- и пара-хлортолуолу. Это обусловлено тем, что метильный радикал является заместителем I рода.

Если хлорирование толуола в присутсвии AlCl 3 проводить в избытке хлора, возможно образование трихлорзамещенного толуола:

Аналогично при хлорировании толуола на свету при большем соотношении хлор/толуол можно получить дихлорметилбензол или трихлорметилбензол:

Нитрование

Замещение атомов водорода на нитрогрппу, при нитровании толуола смесью концентрированных азотной и серной кислот, приводит к продуктам замещения в ароматическом ядре, а не метильном радикале:

Алкилирование

Как уже было сказано метильный радикал, является ориентантом I рода, поэтому его алкилирование по Фриделю-Крафтсу приводит продуктам замещения в орто- и пара-положения:

Реакции присоединения

Толуол можно прогидрировать до метилциклогексана при использовании металлических катализаторов (Pt, Pd, Ni):

С 6 Н 5 СН 3 + 9O 2 → 7СO 2 + 4Н 2 O

Неполное окисление

При действии такого окислителя, как водный раствор перманганата калия окислению подвергается боковая цепь. Ароматическое ядро в таких условиях окислиться не может. При этом в зависимости от pH раствора будет образовываться либо карбоновая кислота, либо ее соль.

Определение

Углеводороды (УВ) - органические соединения, состоящие из атомов углерода и водорода.

Как вы помните (см. тему "Классификация органических веществ" ), все органические вещества можно подразделить на циклические и ациклические . Углеводороды являются только одним из классов органических соединений, их можно условно разделить на предельные и непредельные .

Предельные , или насыщенные УВ , не содержат кратных связей в структуре молекул.

Непредельные или ненасыщенные УВ содержат кратные связи - двойные или тройные.

Традиционно классификацию органических веществ проводят по строению углеводородной цепи, поэтому все УВ также подразделяются на незамкнутые (ациклические) и УВ с замкнутой цепью (карбоциклические). В свою очередь, класс ароматических УВ можно отнести и к классу непредельных соединений, так как в их структуре присутствуют кратные двойные связи. Другими словами: все ароматические соединения являются непредельными, но не все непредельные соединения - ароматические. В свою очередь, циклопарафины тоже могут быть предельными (насыщенными), а могут содержать в своей структуре кратные двойные связи и проявлять свойства ненасыщенных УВ.

Схематично эту классификацию можно отобразить следующим образом:

Углеводороды (УВ) Класс УВ

формула гомологического

в названии

Связи С-С Гибридизация

Ациклические

(алифатические)

предельные алканы $C_nH_{2n+2}$ -ан …(C-C)… $sp^3$
непредельные алкены $C_nH_{2n}$ -ен …(C=C)… $sp^2$
алкины $C_nH_{2n-2}$ -ин …(C $\equiv$C)… $sp$
алкадиены -диен …(C=C)..(C=C)… $sp^3$/ $sp^2$ /$sp$

циклические

ароматические арены $C_nH_{2n-6}$ -бензол ароматическая система $C_6H_5$- $sp^2$
алициклические циклоалканы $C_nH_{2n}$ цикло-……-ан замкнутый цикл …(C=C)… $sp^3$

Ациклические соединения обычно подразделяют на предельные и непредельные (насыщенные и ненасыщенные) в зависимости от того, отсутствуют или присутствуют в их молекулах кратные углерод-углеродные связи:

Среди циклических соединений выделяют карбоциклические и гетероциклические. В молекулах карбоциклических соединений цикл образован только атомами углерода. В гетероциклах наряду с атомами углерода могут присутствовать и другие элементы, например O, N, S:

Карбоциклические соединения подразделяют на алициклические и ароматические. Ароматические соединения содержат в своём составе бензольное кольцо:

Общие химические свойства классов углеводородов

Теперь давайте дадим общую характеристику отдельным классам углеводородов и опишем их общие химические свойства. Более подробно все классы соединений будут рассматриваться в отдельных специальных темах. Начнем с предельных или насыщенных УВ. Представителями этого класса являются алканы .

Определение

Алканы (парафины) - углеводороды, в молекулах которых атомы связаны одинарными связями и состав которых соответствует общей формуле $C_nH_{2n+2}$.

Алканы называют насыщенными УВ в соответствии с их химическими свойствами. Все связи в молекулах алканов одинарные. Перекрывание происходит по линии, соединяющей ядра атомов, то есть это$\sigma$-связи, поэтому в жестких условиях (высокая температура, УФ-облучение) алканы могут вступать в реакции замещения, элиминирования (дегидрирования и ароматизации) и изомеризации либо в реакции расщепления, то есть разрушения углеродной цепи.

Все реакции протекают преимущественно по свободно-радикальному механизму , когда в результате реакции происходит гомолитический разрыв связей и образуются высокореакционные частицы, имеющие неспаренный электрон - свободные радикалы. Связано это с низкой поляризацией связей C-H и отсутствием участков с повышенной или пониженной электронной плотностью. Алканы не реагируют с заряженными частицами, так как связи в алканах не разрываются по гетеролитическому механизму. Алканы не могут вступать в реакции присоединения, так как из определения насыщаемости связи следует, что в молекулах с $\sigma$-связями, углерод проявляет максимальную валентность, где каждая из четырех связей образована одной парой электронов.

Циклоалканы (циклопарафины) также могут быть относены к классу предельных УВ, так как представляют собой карбоциклические соединения с одинарными $\sigma$-связями.

Определение

Циклоалканы (циклопарафины) - это циклические углеводороды, не содержащие в молекуле кратных связей и соответствующие общей формуле $C_nH_{2n}$

Циклоалканы также являются насыщенными углеводородами, то есть проявляют свойства, аналогичные алканам. В отличии от алканов, циклоалканы смалыми циклами (циклопропан и циклобутан) могут вступать в реакции присоединения , происходящие с разрывом связей и раскрытием цикла. Для остальных циклоалканов характерны реакции замещения , протекающие, аналогично алканам, по свободно-радикальному механизму.

К непредельным (ненасыщенным) углеводородам , согласно классификации, относятся алкены, алкадиены и алкины. Ароматические УВ также могут быть отнесены к непредельным соединениям. Свойство "непредельности" связано со способностью этих УВ вступать в реакции присоединения по кратным связям и образовывать, в конце концов, предельные УВ. Реакции присоединения включают реакции гидрирования (присоединение водорода), галогенирования (присоединение галогенов), гидрогалогенирования (присоединение галогенводородов), гидратации (присоединение воды), полимеризации. Большая часть этих реакций протекает по механизму электрофильного присоединения.

Определение

Алкены (олефины )- ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле $C_nH_{2n}$.

Для алкенов, помимо указанных реакций присоединения, характерны также реакции окисления с образованием гликолей (двухатомных спиртов), кетонов или карбоновых кислот, в зависимости от длины цепи и места расположения двойной связи. Подробно особенности протекания этих реакций рассматриваются в теме "ОВР в органической химии "

Определение

Алкадиены - ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, две двойные связи между атомами углерода и соответствующие общей формуле $C_nH_{2n-2}$.

Расположение двойной связи в молекуле алкадиенов может быть различным:

кумулятивные диены (аллены): $-CH_2-CH=C=CH-CH2-$

изолированные диены : $-CH_2-CH=CH-CH_2-CH_2-CH=CH-CH_2-$

сопряженные диены : $-CH_2-CH=CH-CH=CH-CH_2-$

Наибольшее практическое применение имеют сопряженные алкадиены, в которых две двойные связи разделены одинарной связью, как, например, в молекуле бутадиена: $CH_2=CH-CH=CH_2$. На основе бутадиена синтезирован искусственный каучук. Поэтому основным практическим свойством алкадиенов является способность к полимеризации за счет двойных связей. Химические свойства сопряженных алкадиенов будут подробно рассмотрены в теме: "Особенности химических свойств сопряженных диенов "

Определение

Алкины - ациклические углеводороды, содержащие в структуре молекулы, помимо одинарных связей, одну тройную связь между атомами углерода, и соответствующие общей формуле $C_nH_{2n-2}$.

Алкины и алкадиены являются межклассовыми изомерами, так как отвечают одной общей формуле. Для алкинов, как и для всех непредельных УВ, характерны реакции присоединения . Реакции протекают по электрофильному механизму в две стадии - с образованием алкенов и их производных и далее с образованием предельных УВ. Причем первая стадия протекает медленнее второй. Особенным свойством ацетилена, первого представителя ряда алкинов, является реакция тримеризации с получением бензола (реакция Зелинского). Особенности протекания этой и других реакций будут рассмотрены в теме "Применение и получение аренов ".

Определение

Ароматические углеводороды (арены) - карбоциклические углеводороды, в молекулах которых есть одно или несколько бензольных колец. Состав аренов с одним бензольным кольцом отвечает общей формуле $C_nH_{2n-6}$.

В основе всех ароматических соединений лежит бензольное ядро, формула которого графически изображается двумя способами:

Формула с делокализованными связями означает, что электронные р-орбитали атомов углерода участвуют в сопряжении и образуют единую $\pi$-систему. Производные (гомологи) бензола образуются за счет замещения атомов водорода в кольце на другие атомы или группы атомов и образуют боковые цепи.

Поэтому для ароматических соединений ряда бензола характерны реакции по двум направлениям: по бензольному кольцу , и "в боковую цепь" . По бензольному кольцу (ядру) характерны реакции электрофильного замещения , так как наличие $\pi$-системы, то есть области повышенной электронной плотности, делает структуру бензола энергетически выгодной для воздействия электрофилов (положительных ионов). В отличии от непредельных УВ, для которых характерны реакции электрофильного присоединения, ароматическая структура бензола обладает повышенной устойчивостью и нарушение ее энергетически невыгодно. Поэтому при электрофильной атаке происходит не разрыв $\pi$- связей, а замещение атомов водорода. Реакции "в боковую цепь" зависят от характера радикала-заместителя и могут протекать по разным механизмам.

Ароматические соединения. имеющие в своей структуре несколько (два и более) конденсированных бензольных колец называются полиядерными ароматическими УВ и имеют свои тривиальные названия.