Гравитационные волны как источник информации о природе. Гравитационные волны: самое важное о колоссальном открытии. – Возможность зарегистрировать реликтовый гравитационный фон и измерить его характеристики, такие как плотность, температура и т.п., позвол

Гравитационные волны, теоретически предсказанные Эйнштейном еще в 1917 году, всё еще дожидаются своего первооткрывателя.

В конце 1969 года профессор физики Мэрилендского университета Джозеф Вебер сделал сенсационное заявление. Он объявил, что обнаружил волны тяготения, пришедшие на Землю из глубин космоса. До того времени ни один ученый не выступал с подобными претензиями, да и сама возможность детектирования таких волн считалась далеко не очевидной. Однако Вебер слыл авторитетом в своей области, и посему коллеги восприняли его сообщение с полной серьезностью.

Однако вскоре наступило разочарование. Амплитуды волн, якобы зарегистрированных Вебером, в миллионы раз превышали теоретическую величину. Вебер утверждал, что эти волны пришли из закрытого пылевыми облаками центра нашей Галактики, о котором тогда было мало что известно. Астрофизики предположили, что там скрывается гигантская черная дыра, которая ежегодно пожирает тысячи звезд и выбрасывает часть поглощенной энергии в виде гравитационного излучения, а астрономы занялись тщетным поиском более явственных следов этого космического каннибализма (сейчас доказано, что черная дыра там действительно есть, но ведет она себя вполне пристойно). Физики из США, СССР, Франции, Германии, Англии и Италии приступили к экспериментам на детекторах того же типа - и не добились ничего.

Ученые до сих пор не знают, чему приписать странные показания приборов Вебера. Однако его усилия не пропали даром, хотя гравитационные волны до сих пор так и не обнаружены. Несколько установок для их поиска уже построены или строятся, а лет через десять такие детекторы будут выведены и в космос. Вполне возможно, что в не столь отдаленном будущем гравитационное излучение станет такой же наблюдаемой физической реальностью, как и электромагнитные колебания. К сожалению, Джозеф Вебер этого уже не узнает - он умер в сентябре 2000 года.

Что такое волны тяготения

Часто говорят, что гравитационные волны - это распространяющиеся в пространстве возмущения поля тяготения. Такое определение правильно, но неполно. Согласно общей теории относительности, тяготение возникает из-за искривления пространственно-временного континуума. Волны тяготения - это флуктуации пространственно-временной метрики, которые проявляют себя как колебания гравитационного поля, поэтому их часто образно называют пространственно-временной рябью. Гравитационные волны были в 1917 году теоретически предсказаны Альбертом Эйнштейном. В существовании их никто не сомневается, но гравитационные волны всё еще дожидаются своего первооткрывателя.

Источником гравитационных волн служат любые движения материальных тел, приводящие к неоднородному изменению силы тяготения в окружающем пространстве. Движущееся с постоянной скоростью тело ничего не излучает, поскольку характер его поля тяготения не изменяется. Для испускания волн тяготения необходимы ускорения, но не любые. Цилиндр, который вращается вокруг своей оси симметрии, испытывает ускорение, однако его гравитационное поле остается однородным, и волны тяготения не возникают. А вот если раскрутить этот цилиндр вокруг другой оси, поле станет осциллировать, и от цилиндра во все стороны побегут гравитационные волны.

Этот вывод относится к любому телу (или системе тел), несимметричному относительно оси вращения (в таких случаях говорят, что тело имеет квадрупольный момент). Система масс, квадрупольный момент которой меняется со временем, всегда излучает гравитационные волны.

Основные свойства гравитационных волн

Астрофизики предполагают, что именно излучение гравитационных волн, отбирая энергию, ограничивает скорость вращения массивного пульсара при поглощении вещества соседней звезды.


Гравитационные маяки космоса

Гравитационное излучение земных источников чрезвычайно слабо. Стальная колонна массой 10 000 тонн, подвешенная за центр в горизонтальной плоскости и раскрученная вокруг вертикальной оси до 600 об./мин, излучает мощность примерно 10 -24 Вт. Поэтому единственная надежда обнаружить волны тяготения - найти космический источник гравитационного излучения.

В этом плане весьма перспективны тесные двойные звезды. Причина проста: мощность гравитационного излучения такой системы растет в обратной пропорции к пятой степени ее поперечника. Еще лучше, если траектории звезд сильно вытянуты, так как при этом возрастает скорость изменения квадрупольного момента. Совсем хорошо, если двойная система состоит из нейтронных звезд или черных дыр. Такие системы подобны гравитационным маякам в космосе - их излучение имеет периодический характер.

В космосе существуют и «импульсные» источники, порождающие короткие, но чрезвычайно мощные гравитационные всплески. Подобное происходит при коллапсе массивной звезды, предшествующем взрыву сверхновой. Однако деформация звезды должна быть асимметричной, иначе излучение не возникнет. Во время коллапса гравитационные волны могут унести с собой до 10% полной энергии светила! Мощность гравитационного излучения в этом случае составляет порядка 10 50 Вт. Еще больше энергии выделяется при слиянии нейтронных звезд, здесь пиковая мощность достигает 10 52 Вт. Превосходный источник излучения - столкновение черных дыр: их массы могут превышать массы нейтронных звезд в миллиарды раз.

Еще один источник гравитационных волн - космологическая инфляция. Сразу после Большого взрыва Вселенная начала чрезвычайно быстро расширяться, и меньше чем за 10 -34 секунды ее поперечник увеличился с 10 -33 см до макроскопического размера. Этот процесс неизмеримо усилил гравитационные волны, существовавшие до его начала, и их потомки сохранились до сих пор.

Косвенные подтверждения

Первое доказательство существования волн тяготения связано с работами американского радиоастронома Джозефа Тейлора и его студента Расселла Халса. В 1974 году они обнаружили пару обращающихся друг вокруг друга нейтронных звезд (излучающий в радиодиапазоне пульсар с молчаливым компаньоном). Пульсар вращался вокруг своей оси со стабильной угловой скоростью (что бывает далеко не всегда) и поэтому служил исключительно точными часами. Эта особенность позволила измерить массы обеих звезд и выяснить характер их орбитального движения. Оказалось, что период обращения этой двойной системы (около 3 ч 45 мин) ежегодно сокращается на 70 мкс. Эта величина хорошо согласуется с решениями уравнений общей теории относительности, описывающих потерю энергии звездной пары, обусловленную гравитационным излучением (впрочем, столкновение этих звезд случится нескоро, через 300 млн лет). В 1993 году Тейлор и Халс были удостоены за это открытие Нобелевской премии.

Гравитационно-волновые антенны

Как обнаружить гравитационные волны экспериментально? Вебер использовал в качестве детекторов сплошные алюминиевые цилиндры метровой длины с пьезодатчиками на торцах. Их с максимальной тщательностью изолировали от внешних механических воздействий в вакуумной камере. Два таких цилиндра Вебер установил в бункере под полем для гольфа Мэрилендского университета, и один - в Аргоннской национальной лаборатории.

Идея эксперимента проста. Пространство под действием гравитационных волн сжимается и растягивается. Благодаря этому цилиндр вибрирует в продольном направлении, выступая в качестве гравитационно-волновой антенны, а пьезоэлектрические кристаллы переводят вибрации в электрические сигналы. Любое прохождение космических волн тяготения практически одновременно действует на детекторы, разнесенные на тысячу километров, что позволяет отфильтровать гравитационные импульсы от различного рода шумов.

Веберовские датчики были в состоянии заметить смещения торцов цилиндра, равные всего 10 -15 его длины - в данном случае 10 -13 см. Именно такие колебания Веберу удалось обнаружить, о чем он впервые и сообщил в 1959 году на страницах Physical Review Letters . Все попытки повторить эти результаты оказались тщетными. Данные Вебера к тому же противоречат теории, которая практически не позволяет ожидать относительных смещений выше 10 -18 (причем гораздо вероятнее значения менее 10 -20). Не исключено, что Вебер напутал при статистической обработке результатов. Первая попытка экспериментально обнаружить гравитационное излучение закончилась неудачей.

В дальнейшем гравитационно-волновые антенны значительно усовершенствовали. В 1967 году американский физик Билл Фэйрбанк предложил охлаждать их в жидком гелии. Это не только позволило избавиться от большей части тепловых шумов, но и открыло возможность применения сквидов (сверхпроводящих квантовых интерферометров), точнейших сверхчувствительных магнитометров. Реализация этой идеи оказалась сопряжена с множеством технических трудностей, и сам Фэйрбанк до нее не дожил. К началу 1980-х годов физики из Стэнфордского университета построили установку с чувствительностью 10 -18 , однако волн не зарегистрировали. Сейчас в ряде стран действуют ультракриогенные вибрационные детекторы волн тяготения, работающие при температурах лишь на десятые и сотые доли градуса выше абсолютного нуля. Такова, например, установка AURIGA в Падуе. Антенной для нее служит трехметровый цилиндр из алюминиево-магниевого сплава, диаметр которого составляет 60 см, а вес - 2,3 т. Он подвешен в вакуумной камере, охлаждаемой до 0,1 К. Его сотрясения (с частотой порядка 1000 Гц) передаются на вспомогательный резонатор массой в 1 кг, который колеблется с такой же частотой, но много большей амплитудой. Эти вибрации регистрируются измерительной аппаратурой и анализируются с помощью компьютера. Чувствительность комплекса AURIGA - около 10 -20 -10 -21 .

Интерферометры

Еще один способ детектирования волн тяготения основан на отказе от массивных резонаторов в пользу световых лучей. Первыми в 1962 году его предложили советские физики Михаил Герценштейн и Владислав Пустовойт, а двумя годами позже и Вебер. В начале 1970-х сотрудник исследовательской лаборатории корпорации Hughes Aircraft Роберт Форвард (в прошлом аспирант Вебера, в дальнейшем весьма известный писатель-фантаст) построил первый такой детектор с вполне приличной чувствительностью. Тогда же профессор Массачусетского технологического института (MIT) Райнер Вайсс выполнил очень глубокий теоретический анализ возможностей регистрации гравитационных волн с помощью оптических методов.

Эти методы предполагают использование аналогов прибора, с помощью которого 125 лет назад физик Альберт Майкельсон доказал, что скорость света строго одинакова по всем направлениям. В этой установке, интерферометре Майкельсона, пучок света попадает на полупрозрачную пластинку и разделяется на два взаимно перпендикулярных луча, которые отражаются от зеркал, расположенных на одинаковом расстоянии от пластинки. Затем пучки опять сливаются и падают на экран, где возникает интерференционная картина (светлые и темные полосы и линии). Если скорость света зависит от его направления, то при повороте всей установки эта картинка должна измениться, если нет - остаться такой же, что и раньше.

Интерференционный детектор волн тяготения работает сходным образом. Проходящая волна деформирует пространство и изменяет длину каждого плеча интерферометра (пути, по которому свет идет от делителя до зеркала), растягивая одно плечо и сжимая другое. Интерференционная картинка меняется, и это можно зарегистрировать. Но это непросто: если ожидаемое относительное изменение длины плеч интерферометра составляет 10 -20 , то при настольных размерах прибора (как у Майкельсона) оно оборачивается колебаниями амплитудой порядка 10 -18 см. Для сравнения: волны видимого света в 10 трлн раз длиннее! Можно увеличить протяженность плеч до нескольких километров, однако проблемы всё равно останутся. Лазерный источник света должен быть и мощным, и стабильным по частоте, зеркала - идеально плоскими и идеально отражающими, вакуум в трубах, по которым распространяется свет, - максимально глубоким, механическая стабилизация всей системы - воистину совершенной. Короче говоря, интерференционный детектор гравитационных волн - прибор дорогой и громоздкий.

Сегодня самая большая установка такого рода - американский комплекс LIGO (Light Interferometer Gravitational Waves Observatory ). Он состоит из двух обсерваторий, одна из которых находится на тихоокеанском побережье США, а другая - неподалеку от Мексиканского залива. Измерения производят с помощью трех интерферометров (два в штате Вашингтон, один в Луизиане) с плечами четырехкилометровой длины. Установка снабжена зеркальными накопителями света, которые увеличивают ее чувствительность. «С ноября 2005 года все три наших интерферометра работают в нормальном режиме, - рассказал «Популярной механике» представитель комплекса LIGO Питер Солсон, профессор физики Сиракузского университета. - Мы постоянно обмениваемся данными с другими обсерваториями, пытающимися обнаружить гравитационные волны частотой в десятки и сотни герц, возникшие при самых мощных взрывах сверхновых и слиянии нейтронных звезд и черных дыр. Сейчас в строю находится немецкий интерферометр GEO 600 (длина плеч - 600 м), расположенный в 25 км от Ганновера. 300-метровый японский прибор TAMA в настоящее время модернизируется. Трехкилометровый детектор Virgo в окрестностях Пизы подключится к общим усилиям в начале 2007-го, причем на частотах менее 50 Гц он сможет превзойти LIGO. Установки с ультракриогенными резонаторами действуют с возрастающей эффективностью, хотя их чувствительность всё же несколько меньше нашей».

Перспективы

Что же ожидает методы обнаружения гравитационных волн в ближайшем будущем? Об этом «Популярной механике» рассказал профессор Райнер Вайсс: «Через несколько лет в обсерваториях комплекса LIGO установят более мощные лазеры и более совершенные детекторы, что приведет к 15-кратному увеличению чувствительности. Сейчас она составляет 10 -21 (на частотах порядка 100 Гц), а после модернизации превысит 10 -22 . Модернизированный комплекс, Advanced LIGO, в 15 раз увеличит глубину проникновения в космос. В этом проекте активно участвует профессор МГУ Владимир Брагинский, один из пионеров изучения гравитационных волн.

На середину следующего десятилетия запланирован запуск космического интерферометра LISA (Laser Interferometer Space Antenna ) с длиной плеч в 5 миллионов километров, это совместный проект NASA и Европейского космического агентства. Чувствительность этой обсерватории будет в сотни раз выше, чем возможности наземных инструментов. Она в первую очередь предназначена для поиска низкочастотных (10 -4 -10 -1 Гц) гравитационных волн, которые невозможно уловить на поверхности Земли из-за атмосферных и сейсмических помех. Такие волны испускают двойные звездные системы, вполне типичные обитатели Космоса. LISA также сможет регистрировать волны тяготения, возникшие при поглощении черными дырами обыкновенных звезд. А вот для детектирования реликтовых гравитационных волн, несущих информацию о состоянии материи в первые мгновения после Большого взрыва, скорее всего, потребуются более продвинутые космические инструменты. Такая установка, Big Bang Observer , сейчас обсуждается, однако вряд ли ее удастся создать и запустить ранее чем через 30-40 лет».

В четверг, 11 февраля, группа ученых из международного проекта LIGO Scientific Collaboration заявили, что им удалось , существование которых еще в 1916 году предсказал Альберт Эйнштейн. По утверждению исследователей, 14 сентября 2015 года они зафиксировали гравитационную волну, которая была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца, после чего они слились в одну большую черную дыру. По их словам, это произошло предположительно 1,3 миллиарда лет назад на расстоянии 410 Мегапарсеков от нашей галактики.

Подробно о гравитационных волнах и масштабном открытии ЛІГА.net рассказал Богдан Гнатык , украинский ученый, астрофизик, доктор физико-математических наук, ведущий научный сотрудник Астрономической обсерватории Киевского национального университета имени Тараса Шевченко, который возглавлял обсерваторию с 2001-го по 2004 год.

Теория простым языком

Физика изучает взаимодействие между телами. Установлено, что между телами существует четыре вида взаимодействия: электромагнитное, сильное и слабое ядерное взаимодействие и гравитационное взаимодействие, которое мы все ощущаем. Вследствие гравитационного взаимодействия планеты вращаются вокруг Солнца, тела имеют вес и падают на землю. С гравитационным взаимодействием человек сталкивается постоянно.

В 1916 году, 100 лет назад, Альберт Эйнштейн построил теорию гравитации, которая улучшала ньютоновскую теорию гравитации, сделала ее математически правильной: она стала отвечать всем требованиям физики, стала учитывать то, что гравитация распространяется с очень большой, но конечной скоростью. Это по праву одно из самых грандиозных достижений Эйнштейна, поскольку он построил ​​теорию гравитации, которая отвечает всем явлениям физики, которые мы сегодня наблюдаем.

Эта теория также предполагала существование гравитационных волн . Основой этого предсказания было то, что гравитационные волны существуют в результате гравитационного взаимодействия, которое возникает вследствие слияния двух массивных тел.

Что такое гравитационная волна

Сложным языком это возбуждение метрики пространства-времени. "Скажем, пространство имеет определенную упругость и по нему могут бежать волны. Это похоже на то, когда мы в воду бросаем камешек и от него разбегаются волны", - рассказал ЛІГА.net доктор физико-математических наук.

Ученым удалось экспериментально доказать, что подобное колебание имело место во Вселенной и во всех направлениях пробежала гравитационная волна. "Астрофизическим способом впервые было зафиксировано явление такой катастрофической эволюции двойной системы, когда сливаются два объекта в один, а это слияние приводит к очень интенсивному выделению гравитационной энергии, которая затем в виде гравитационных волн распространяется в пространстве", - пояснил ученый.


Как это выглядит (фото - EPA)

Эти гравитационные волны очень слабые и чтобы они поколебали пространство-время, необходимо взаимодействие очень больших и массивных тел, чтобы напряженность гравитационного поля была большая в месте генерирования. Но, несмотря на их слабость, наблюдатель через определенное время (равное расстоянию к взаимодействию разделенному на скорость прохождения сигнала) зарегистрирует эту гравитационную волну.

Приведем пример: если бы Земля упала на Солнце, то произошло бы гравитационное взаимодействие: выделилась бы гравитационная энергия, образовалась бы гравитационная сферически-симметричная волна и наблюдатель смог бы ее зарегистрировать. "Здесь же произошло аналогичное, но уникальное, с точки зрения астрофизики, явление: столкнулись два массивных тела - две черные дыры", - отметил Гнатык.

Вернемся к теории

Черная дыра - это еще одно предсказание общей теории относительности Эйнштейна, которое предусматривает, что тело, которое имеет огромную массу, но эта масса сконцентрирована в малом объеме, способно существенно искажать пространство вокруг себя, вплоть до его замыкания. То есть, предполагалось, что когда достигается критическая концентрация массы этого тела - такая, что размер тела будет меньше, чем так называемый гравитационный радиус, то вокруг этого тела пространство замкнется и топология его будет такой, что никакой сигнал с него за пределы замкнутого пространства распространиться не сможет.

"То есть, черная дыра, простыми словами, это массивный объект, который настолько тяжелый, что замыкает вокруг себя пространство-время", - говорит ученый.

И мы, по его словам, можем посылать любые сигналы этому объекту, а он нам - нет. То есть, никакие сигналы не могут выходить за пределы черной дыры.

Черная дыра живет по обычным физическим законам, но в результате сильной гравитации, ни одно материальное тело, даже фотон, не способно выйти за пределы этой критической поверхности. Черные дыры образуются в ходе эволюции обычных звезд, когда происходит коллапс центрального ядра и часть вещества звезды, коллапсируя, превращается в черную дыру, а другая часть звезды выбрасывается в виде оболочки Сверхновой звезды, превращаясь в так называемую "вспышку" Сверхновой звезды.

Как мы увидели гравитационную волну

Приведем пример. Когда на поверхности воды у нас есть два поплавка и вода спокойная - то расстояние между ними постоянное. Когда приходит волна, то она смещает эти поплавки и расстояние между поплавками изменится. Волна прошла - и поплавки возвращаются на свои прежние позиции, а расстояние между ними восстанавливается.

Аналогичным образом распространяется и гравитационная волна в пространстве-времени: она сжимает и растягивает тела и объекты, которые встречаются на ее пути. "Когда на пути волны встречается некий объект - он деформируется вдоль своих осей, а после ее прохождения - возвращается к прежней форме. Под действием гравитационной волны все тела деформируются, но эти деформации - очень незначительны", - говорит Гнатык.

Когда прошла волна, которую зафиксировали ученые, то относительный размер тел в пространстве изменился на величину порядка 1 умножить на 10 в минус 21-ой степени. Например, если взять метровую линейку, то она сжалась на такую ​​величину, которая составляла ее размер, умноженный на 10 в минус 21-ой степени. Это очень мизерная величина. И проблема заключалась в том, что ученым нужно было научиться это расстояние измерить. Обычные методы давали точность порядка 1 к 10 в 9 степени милионнам, а здесь необходима гораздо более высокая точность. Для этого создали так называемые гравитационные антенны (детекторы гравитационных волн).


Обсерватория LIGO (фото - EPA)

Антенна, которая зафиксировала гравитационные волны, построена таким образом: существует две трубы, примерно по 4 километра в длину, расположенные в форме буквы "Г", но с одинаковыми плечами и под прямым углом. Когда на систему падает гравитационная волна, она деформирует крылья антенны, но в зависимости от ее ориентации, она деформирует одно больше, а второе - меньше. И тогда возникает разность хода, интерференционная картина сигнала меняется - возникает суммарная положительная или отрицательная амплитуда.

"То есть, прохождение гравитационной волны аналогично волне на воде, проходящей между двумя поплавками: если бы мы мерили расстояние между ними во время и после прохождения волны, то мы бы увидели, что расстояние изменилось бы, а потом снова стало прежним", - рассказал Гнатык.

Здесь же измеряется относительное изменение расстояния двух крыльев интерферометра, из которых каждое имеет около 4 километров в длину. И только очень точные технологии и системы позволяют измерить такое микроскопическое смещение крыльев, вызванное гравитационной волной.

На границе Вселенной: откуда пришла волна

Ученые зафиксировали сигнал с помощью двух детекторов, которые в США расположены в двух штатах: Луизиане и Вашингтон на расстоянии около 3 тыс километров. Ученым удалось оценить, откуда и с какого расстояния пришел этот сигнал. Оценки показывают, что сигнал пришел с расстояния, которое составляет 410 Мегапарсеков. Мегапарсек - это расстояние, которое свет проходит за три миллиона лет.

Чтобы было легче представить: ближайшая к нам активная галактика со сверхмассивной черной дырой в центре - Центавр А, которая находится от нашей на расстоянии четыре Мегапарсека, в то же время Туманность Андромеды находится на расстоянии 0,7 Мегапарсеков. "То есть расстояние, с которого пришел сигнал гравитационной волны настолько велико, что сигнал шел к Земле примерно 1,3 млрд лет. Это космологические расстояния, которые достигают около 10% горизонта нашей Вселенной", - рассказал ученый.

На таком расстоянии в какой-то далекой галактике произошло слияние двух черных дыр. Эти дыры, с одной стороны, были относительно малыми по размерам, а с другой стороны, большая сила амплитуды сигнала свидетельствует, что они были очень тяжелые. Установлено, что массы их были соответственно 36 и 29 масс Солнца. Масса Солнца, как известно, составляет величину, которая равняется 2 умножить на 10 в 30 степени килограмм. После слияния эти два тела слились и теперь на их месте образовалась одна черная дыра, которая имеет массу, равную 62 массам Солнца. При этом, примерно три массы Солнца выплеснулось в виде энергии гравитационной волны.

Кто и когда сделал открытие

Обнаружить гравитационную волну удалось ученым из международного проекта LIGO 14 сентября 2015 года. LIGO (Laser Interferometry Gravitation Observatory) - это международный проект, в котором принимают участие ряд государств, осуществивших определенный финансовый и научный взнос, в частности США, Италия, Япония, которые являются передовыми в области этих исследований.


Професcоры Райнер Вайс и Кип Торн (фото - EPA)

Была зафиксирована следующая картина: произошло смещение крыльев гравитационного детектора, в результате реального прохождения гравитационной волны через нашу планету и через эту установку. Об этом не сообщили тогда, потому что сигнал нужно было обработать, "почистить", найти его амплитуду и проверить. Это стандартная процедура: от реального открытия, до объявления об открытии - проходит несколько месяцев для того, чтобы выдать обоснованное заявление. "Никто не хочет портить свою репутацию. Это все секретные данные, до обнародования которых - о них никто не знал, ходили только слухи", - отметил Гнатык.

История

Гравитационные волны исследуются с 70-х годов прошлого века. За это время был создан ряд детекторов и проведен ряд фундаментальных исследований. В 80-х годах американский ученый Джозеф Вебер построил первую гравитационную антенну в виде алюминиевого цилиндра, который имел размер порядка нескольких метров, оснащенный пьезо-датчиками, которые должны были зафиксировать прохождение гравитационной волны.

Чувствительность этого прибора была в миллион раз хуже, чем нынешние детекторы. И, конечно, он тогда реально зафиксировать волну не мог, хотя и Вебер заявил, что он это сделал: пресса об этом написала и произошел "гравитацонный бум" - в мире сразу начали строить гравитационные антенны. Вебер стимулировал других ученых заняться гравитационными волнами и продолжать эксперименты над этим явлением, благодаря чему удалось в миллион раз поднять чувствительность детекторов.

Однако само явление гравитационных волн было зарегистрировано еще в прошлом веке, когда ученые обнаружили двойной пульсар. Это была косвенная регистрация факта, что гравитационные волны существуют, доказанная благодаря астрономическим наблюдениям. Пульсар был открыт Расселом Халсом и Джозефом Тейлором в 1974 году, во время проведения наблюдений на радиотелескопе обсерватории Аресибо. Ученые были удостоены Нобелевской премии в 1993 году "за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации".

Исследования в мире и Украине

На территории Италии близок к завершению аналогичный проект, которые называется Virgo. Япония также намерена через год запустить аналогичный детектор, Индия также готовит такой эксперимент. То есть, во многих точках мира существуют подобные детекторы, но они еще не вышли на тот режим чувствительности, чтобы можно было говорить о фиксации гравитационных волн.

"Официально Украина не входит в LIGO и также не участвует в итальянском и японском проектах. Среди таких фундаментальных направлений Украина сейчас принимает участие в проекте LHC (БАК - Большой адронный коллайдер) и в CERN"е (официально станем участником только после уплаты вступительного взноса)", - рассказал ЛІГА.net доктор физико-математических наук Богдан Гнатык.

По его словам, Украина с 2015 года является полноправным членом международной коллаборации CTA (МЧТ- массив черенковских телескопов), которая строит современный телескоп мультиТеВ ного гамма диапазона (с энергиями фотонов до 1014 эВ). "Основными источниками таких фотонов как раз и являются окрестности сверхмассивных черных дыр, гравитационное излучение которых впервые зафиксировал детектор LIGO. Поэтому открытие новых окон в астрономии - гравитационно-волнового и мультиТеВ ного электромагнитного обещает нам еще много открытий в будущем", - добавляет ученый.

Что дальше и как новые знания помогут людям? Ученые расходятся во мнениях. Одни говорят, что это лишь очередная ступень в понимании механизмов Вселенной. Другие видят в этом первые шаги на пути к новым технологиям перемещения сквозь время и пространство. Так или иначе - это открытие в очередной раз доказало, как мало мы понимаем и как много еще предстоит узнать.

Свободная поверхность жидкости, находящейся в равновесии в поле тяжести, - плоская. Если под влиянием какого-либо внешнего воздействия поверхность жидкости в каком-нибудь месте выводится из ее равновесного положения, то в жидкости возникает движение. Это движение будет распространяться вдоль всей поверхности жидкости в виде волн, называемых гравитационными, поскольку они обусловливаются действием поля тяжести. Гравитационные волны происходят в основном на поверхности жидкости, захватывая внутренние ее слои тем меньше, чем глубже эти слои расположены.

Мы будем рассматривать здесь такие гравитационные волны, в которых скорость движущихся частиц жидкости настолько мала, что в уравнении Эйлера можно пренебречь членом по сравнению с Легко выяснить, что означает это условие физически. В течение промежутка времени порядка периода колебаний, совершаемых частицами жидкости в волне, эти частицы проходят расстояние порядка амплитуды а волны, поэтому скорость их движения - порядка Скорость v заметно меняется на протяжении интервалов времени порядка и на протяжении расстояний порядка вдоль направления распространения волны ( - длина волны). Поэтому производная от скорости по времени - порядка а по координатам - порядка Таким образом, условие эквивалентно требованию

т. е. амплитуда колебаний в волне должна быть мала по сравнению с длиной волны. В § 9 мы видели, что если в уравнении движения можно пренебречь членом то движение жидкости потенциально. Предполагая жидкость несжимаемой, мы можем воспользоваться поэтому уравнениями (10,6) и (10,7). В уравнении (10,7) мы можем теперь пренебречь членом содержащим квадрат скорости; положив и введя в поле тяжести член получим:

(12,2)

Ось выбираем, как обычно, вертикально вверх, а в качестве плоскости х, у выбираем равновесную плоскую поверхность жидкости.

Будем обозначать - координату точек поверхности жидкости посредством ; является функцией координат х, у и времени t. В равновесии так что есть вертикальное смещение жидкой поверхности при ее колебаниях.

Пусть на поверхность жидкости действует постоянное давление Тогда имеем на поверхности согласно (12,2)

Постоянную можно устранить переопределением потенциала (прибавлением к нему независящей от координат величины Тогда условие на поверхности жидкости примет вид

Малость амплитуды колебаний в волне означает, что смещение мало. Поэтому можно считать, в том же приближении, что вертикальная компонента скорости движения точек поверхности совпадает с производной по времени от смещения Но так что имеем:

В силу малости колебаний можно в этом условии взять значения производных при вместо Таким образом, получаем окончательно следующую систему уравнений, определяющих движение в гравитационной волне:

Будем рассматривать волны на поверхности жидкости, считая эту поверхность неограниченной. Будем также считать, что длина волны мала по сравнению с глубиной жидкости; тогда можно рассматривать жидкость как бесконечно глубокую. Поэтому мы не пишем граничных условий на боковых границах и на дне жидкости.

Рассмотрим гравитационную волну, распространяющуюся вдоль оси и однородную вдоль оси в такой волне все величины не зависят от координаты у. Будем искать решение, являющееся простой периодической функцией времени и координаты х:

где ( - циклическая частота (мы будем говорить о ней просто как о частоте), k - волновой вектор волны, - длина волны. Подставив это выражение в уравнение получим для функции уравнение

Его решение, затухающее в глубь жидкости (т. е. при ):

Мы должны еще удовлетворить граничному условию (12,5), Подставив в него (12,5), найдем связь между частотой b волновым вектором (или, как говорят, закон дисперсии волн):

Распределение скоростей в жидкости получается дифференцированием потенциала по координатам:

Мы видим, что скорость экспоненциально падает по направлению в глубь жидкости. В каждой заданной точке пространства (т. е. при заданных х, z) вектор скорости равномерно вращается в плоскости х, оставаясь постоянным по своей величине.

Определим еще траекторию частиц жидкости в волне. Обозначим временно посредством х, z координаты движущейся частицы жидкости (а не координаты неподвижной точки в пространстве), а посредством - значения х, для равновесного положения частицы. Тогда а в правой части (12,8) можно приближенно написать вместо , воспользовавшись малостью колебаний. Интегрирование по времени дает тогда:

Таким образом, частицы жидкости описывают окружности вокруг точек с радиусом, экспоненциально убывающим по направлению в глубь жидкости.

Скорость U распространения волны равна, как будет показано в § 67, Подставив сюда находим, что скорость распространения гравитационных волн на неограниченной поверхности бесконечно глубокой жидкости равна

Она растет при увеличении длины волны.

Длинные гравитационные волны

Рассмотрев гравитационные волны, длина которых мала по сравнению с глубиной жидкости, остановимся теперь на противоположном предельном случае волн, длина которых велика по сравнению с глубиной жидкости.

Такие волны называются длинными.

Рассмотрим сначала распространение длинных волн в канале. Длину канала (направленную вдоль оси х) будем считать неограниченной Сечение канала может иметь произвольную форму и может меняться вдоль его длины. Площадь поперечного сечения жидкости в канале обозначим посредством Глубина и ширина канала предполагаются малыми по сравнению с длиной волны.

Мы будем рассматривать здесь продольные длинные волны, в которых жидкость движется вдоль канала. В таких волнах компонента скорости вдоль длины канала велика по сравнению с компонентами

Обозначив просто как v и опуская малые члены, мы можем написать -компоненту уравнения Эйлера в виде

а -компоненту - в виде

(квадратичные по скорости члены опускаем, поскольку амплитуда волны по-прежнему считается малой). Из второго уравнения имеем, замечая, что на свободной поверхности ) должно быть

Подставляя это выражение в первое уравнение, получаем:

Второе уравнение для определения двух неизвестных можно вывести методом, аналогичным выводу уравнения непрерывности. Это уравнение представляет собой по существу уравнение непрерывности применительно к рассматриваемому случаю. Рассмотрим объем жидкости, заключенный между двумя плоскостями поперечного сечения канала, находящимися на расстоянии друг от друга. За единицу времени через одну плоскость войдет объем жидкости, равный а через другую плоскость выйдет объем Поэтому объем жидкости между обеими плоскостями изменится на

February 11th, 2016

Буквально несколько часов назад пришло известие, которое давно ждали в научном мире. Группа ученых из нескольких стран, работающих в составе международного проекта LIGO Scientific Collaboration, заявляют, что при помощи нескольких обсерваторий-детекторов им удалось зафиксировать в лабораторных условиях гравитационные волны.

Они занимаются анализом данных, поступающих с двух лазерно-интерферометрических гравитационно-волновых обсерваторий (Laser Interferometer Gravitational-Wave Observatory — LIGO), расположенных в штатах Луизиана и Вашингтон в США.

Как говорилось на пресс-конференции проекта LIGO,гравитационные волны были зарегистрированы 14 сентября 2015 года сначала на одной обсерватории, а затем через 7 миллисекунд на другой.

На основе анализа полученных данных, которым занимались ученые из многих стран, в том числе и из России, было установлено, что гравитационная волна была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца. После этого они слились в одну большую черную дыру.

Это произошло произошло 1,3 миллиарда лет назад. Сигнал пришел к Земле со стороны созвездия Магелланово облако.

Сергей Попов (астрофизик Государственного астрономического института Штернберга МГУ) объяснил, что такое гравитационные волны и почему так важно их измерять.

Современные теории гравитации — это геометрические теории гравитации, более-менее все, начиная с теории относительности. Геометрические свойства пространства влияют на движение тел или таких объектов как световой луч. И наоборот — распределение энергии (это то же, что и масса в пространстве) влияет на геометрические свойства пространства. Это очень здорово, потому что это просто визуализировать — вся эта разлинованная в клеточку эластичная плоскость имеет под собой некий физический смысл, хотя, разумеется не так все буквально.

Физики используют слово «метрика». Метрика — это то, что описывает геометрические свойства пространства. И вот у нас с ускорением движутся тела. Самое простое — вращается огурец. Важно, чтобы это был, например, не шарик и не сплюснутый диск. Легко себе представить, что когда такой огурец крутится на эластичной плоскости, от него побежит рябь. Представьте себе, что вы стоите где-то, и огурец то одним концом к вам повернется, то другим. Он по-разному влияет на пространство и время, бежит гравитационная волна.

Итак, гравитационная волна — это рябь, бегущая по метрике пространства-времени.

Бусы в космосе

Это фундаментальное свойство наших базовых представлений о том, как устроена гравитация, и люди сто лет хотят это проверить. Хотят убедиться в том, что эффект есть и что он виден в лаборатории. В природе это увидели уже около трех десятков лет назад. Как в быту должны проявлять себя гравитационные волны?

Проще всего это проиллюстрировать так: если бросить в космосе бусы, чтобы они легли кружком, и когда гравитационная волна будет проходить перпендикулярно их плоскости, то они начнут превращаться в эллипс, сжатый то в одну сторону, то в другую. Дело в том, что пространство вокруг них будет возмущено, и они будут это чувствовать.

«Г» на Земле

Примерно такую штуку люди и делают, только не в космосе, а на Земле.

На расстоянии четырех километров друг от друга висят зеркала в виде буквы «г» [имеются в виду американские обсерватории LIGO].

Бегают лазерные лучи — это интерферометр, хорошо понятная вещь. Современные технологии позволяют измерить фантастически малый эффект. Я до сих пор не то чтобы не верю, я верю, но просто в голове не укладывается — смещение зеркал, висящих на расстоянии четырех километров друг от друга составляет меньше, чем размер атомного ядра. Это мало даже по сравнению с длиной волны этого лазера. В этом и была загвоздка: гравитация — самое слабое взаимодействие, и поэтому смещения очень маленькие.

Понадобилось очень много времени, люди пытались это делать с 1970-х годов, потратили жизнь на поиски гравитационных волн. И сейчас только технические возможности позволяют получить регистрацию гравитационной волны в лабораторных условиях, то есть вот она тут пришла, и зеркала сместились.

Направление

В течение года если все будет хорошо, то в мире будут работать уже три детектора. Три детектора — это очень важно, потому что вот эти штуки очень плохо определяют направление сигнала. Примерно так же как и мы на слух плохо определяем направление источника. «Звук откуда-то справа» — эти детекторы примерно так чувствуют. Но если стоят поодаль друг от друга три человека, и один слышит звук справа, другой слева, а третий сзади, то мы очень точно можем определить направление звука. Чем больше будет детекторов, чем больше они будут разбросаны по земному шару, тем точнее мы сможем определить направление на источник, и тогда начнется астрономия.

Ведь конечная задача не только подтвердить общую теорию относительности, но и получить новое астрономическое знание. Вот представьте, что есть черная дыра весом в десять масс Солнца. И она сталкивается с другой черной дырой весом в десять масс Солнца. Столкновение происходит на скорости света. Энергии прорва. Это правда. Ее фантастически много. И ее никак не… Это только рябь пространства и времени. Я бы сказал, что детектирование слияния двух черных дыр на долгое время станет самым надежным подтверждением того, что черные дыры — это примерно такие черные дыры, о которых мы думаем.

Давайте пройдемся по вопросам и явлениям, которые она могла бы раскрыть.

Существуют ли черные дыры на самом деле?

Сигнал, который ожидается от анонса LIGO, возможно, был произведен двумя сливающимися черными дырами. Подобные события - самые энергетические из известных; сила гравитационных волн, излучаемых ими, может ненадолго затмить все звезды наблюдаемой Вселенной в сумме. Сливающиеся черные дыры также весьма просто интерпретировать по весьма чистым гравитационным волнам.

Слияние черных дыр происходит, когда две черных дыр вращаются по спирали друг относительно друга, излучая энергию в виде гравитационных волн. Эти волны имеют характерный звук (ЛЧМ), который можно использовать для измерения массы двух этих объектов. После этого черные дыры обычно сливаются.

«Представьте два мыльных пузыря, которые подходят так близко, что образуют один пузырь. Деформируется более крупный пузырь», - говорит Тибальд Дамур, гравитационный теоретик из Института передовых научных исследований близ Парижа. Окончательная черная дыра будет идеально сферической формы, но предварительно должна испустить гравитационные волны предсказуемого типа.

Одним из важнейших научных последствий обнаружения слияния черных дыр будет подтверждение существования черных дыр - по крайней мере идеально круглых объектов, состоящих из чистого, пустого, искривленного пространства-времени, как предсказывает общая теория относительности. Другое последствие - слияние проходит так, как предсказывали ученые. У астрономов есть масса косвенных подтверждений этого феномена, но пока это были наблюдения звезд и перегретого газа на орбите черных дыр, а не самих черных дыр.

«Научное сообщество, включая меня, недолюбливает черные дыры. Мы принимаем их как должное, - говорит Франс Преториус, специалист по симуляциям ОТО в Принстонском университете в Нью-Джерси. - Но если задуматься о том, какое это удивительное предсказание, нам нужно воистину удивительное доказательство».


Движутся ли гравитационные волны со скоростью света?

Когда ученые начинают сравнивать наблюдения LIGO с наблюдениями других телескопов, первое, что они проверяют, это в одно ли время прибыл сигнал. Физики считают, что гравитация передается частицами-гравитонами, гравитационным аналогом фотонов. Если, как у фотонов, у этих частиц нет массы, то гравитационные волны будут двигаться со скоростью света, соответствуя предсказанию о скорости гравитационных волн в классической теории относительности. (На их скорость может влиять ускоряющееся расширение Вселенной, но это должно проявляться на дистанциях, значительно превосходящих те, что покрывает LIGO).

Вполне возможно, впрочем, что гравитоны обладают небольшой массой, а значит, гравитационные волны будут двигаться со скоростью меньше световой. Так что, например, если LIGO и Virgo обнаружат гравитационные волны и выяснят, что волны прибыли на Землю позже связанных с космическим событием гамма-лучей, это может иметь судьбоносные последствия для фундаментальной физики.

Состоит ли пространство-время из космических струн?

Еще более странное открытие может случиться, если всплески гравитационных волн будут обнаружены выходящими из «космических струн». Эти гипотетические дефекты кривизны пространства-времени, которые могут быть, а могут и не быть связаны с теорий струн, должны быть бесконечно тонкими, но растянутыми на космические расстояния. Ученые прогнозируют, что космические струны, если они существуют, могут случайно перегибаться; если струна перегнется, она вызовет гравитационный всплеск, который могли бы измерить детекторы вроде LIGO или Virgo.

Могут ли нейтронные звезды быть неровными?

Нейтронные звезды - это остатки больших звезд, которые коллапсировали под собственным весом и стали настолько плотными, что электроны и протоны начали плавиться в нейтроны. Ученые плохо понимают физику нейтронных дыр, но гравитационные волны могли бы многое о них рассказать. К примеру, интенсивная гравитация на их поверхности приводит к тому, что нейтронные звезды становятся почти идеально сферическими. Но некоторые ученые предположили, что на них могут быть также «горы» - высотой в несколько миллиметров - которые делают эти плотные объекты диаметром в 10 километров, не больше, слегка асимметричными. Нейтронные звезды обычно крутятся очень быстро, поэтому асимметричное распределение массы будет деформировать пространство-время и производить постоянный гравитационно-волновой сигнал в форме синусоиды, замедляя вращение звезды и излучая энергию.

Пары нейтронных звезд, которые вращаются друг вокруг друга, также производят постоянный сигнал. Подобно черным дырам, эти звезды движутся по спирали и в конечном счете сливаются с характерным звуком. Но его специфика отличается от специфики звука черных дыр.

Отчего взрываются звезды?

Черные дыры и нейтронные звезды образуются, когда массивные звезды перестают светить и коллапсируют сами в себя. Астрофизики думают, что этот процесс лежит в основе всех распространенных типов взрывов сверхновых типа II. Моделирование таких сверхновых пока не показало, отчего они зажигаются, но прослушивание гравитационно-волновых всплесков, испускаемых настоящей сверхновой, как полагают, может дать ответ. В зависимости от того, на что похожи волны всплесков, насколько они громкие, как часто происходят и как коррелируют со сверхновыми, за которыми следят электромагнитные телескопы, эти данные могут помочь исключить кучу существующих моделей.

Как быстро расширяется Вселенная?

Расширение Вселенной означает, что далекие объекты, которые удаляются от нашей галактики, выглядят более красными, чем являются в действительности, поскольку излучаемый ими свет растягивается по мере их движения. Космологи оценивают темпы расширения Вселенной, сравнивая красное смещение галактик с тем, как далеки они от нас. Но это расстояние обычно оценивается по яркости сверхновых типа Ia, и эта методика оставляет кучу неопределенностей.

Если несколько детекторов гравитационных волн по всему миру обнаружат сигналы от слияния одних и тех же нейтронных звезд, вместе они могут абсолютно точно оценить громкость сигнала, а вместе с тем и расстояние, на котором произошло слияние. Они также смогут оценить направление, а с ним и выявить галактику, в которой произошло событие. Сравнивая красное смещение этой галактики с расстоянием до сливающихся звезд, можно получить независимый темп космического расширения, возможно, более точный, чем позволяют современные методы.

источники

http://www.bbc.com/russian/science/2016/02/160211_gravitational_waves

http://cont.ws/post/199519

Вот тут мы как то выясняли , а вот что такое и . Посмотрите еще как выглядит Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Первое прямое обнаружение гравитационных волн было открыто миру 11 февраля 2016 года и породило заголовки по всему миру. За это открытие в 2017 году физики получили Нобелевскую премию и официально запустили новую эпоху гравитационной астрономии. Но группа физиков из Института Нильса Бора в Копенгагене, Дания, ставят это обнаружение под сомнение, основываясь на собственном независимом анализе данных, который проводился в течение последних двух с половиной лет.

Одни из самых загадочных объектов во , черные дыры, регулярно привлекают к себе внимание. Мы знаем, что они сталкиваются, сливаются, меняют яркость, и даже испаряются. А еще, в теории, черные дыры могут связывать между собой Вселенные с помощью . Однако, все наши знания и предположения об этих массивных объектах могут оказаться неточными. Недавно в научном сообществе появились слухи о том, что ученые получили сигнал, исходящий от черной дыры, размер и масса которой настолько огромны, что ее существование физически невозможно.

Первое прямое обнаружение гравитационных волн было открыто миру 11 февраля 2016 года и породило заголовки по всему миру. За это открытие в 2017 году физики получили Нобелевскую премию и официально запустили новую эпоху гравитационной астрономии. Но группа физиков из Института Нильса Бора в Копенгагене, ставят это обнаружение под сомнение, основываясь на собственном независимом анализе данных, который проводился в течение последних двух с половиной лет.