Что изменяется при взаимодействии тел. Взаимодействия тел. Понятие массы тела.Сила. Второй закон Ньютона. Слабые силы и радиоактивность

Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение

План ответа

1. Определение механического движения. 2. Основные понятия механики. 3. Кинематические характеристики. 4. Основные уравнения. 5. Виды движения. 6. Относительность движения.

Механическим движением называют измене­ние положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля; гора Эльбрус находится в покое относительно Земли и движется вместе с Землей относительно Солнца.

Из этих примеров видно, что всегда надо ука­зать тело, относительно которого рассматривается движение, его называюттелом отсчета. Система ко­ординат, тело отсчета, с которым она связана, и вы­бранный способ измерения времени образуютси­стему отсчета. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, рассчитывая траекто­рию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись. Та­ким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой, Линию, вдоль которой движется материальная точка, называют траекторией. Длина части траектории между начальным и конечным положением точки называют путем (L). Единица измерения пути - 1м.

Механическое движение характеризуется тре­мя физическими величинами: перемещением, ско­ростью и ускорением.

Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называетсяперемещением (s), Перемещение - величина векторная Единица изме­рения перемещения-1м.

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток, времени считается достаточно малым, если скорость в течении этого промежутка не меня­лась. Например, при движении автомобиля t ~ 1 с, при движении элементарной частицы t ~ 10 с, при движении небесных тел t ~ 10 с. Определяющая формула скорости имеет вид v = s/t. Единица изме­рения скорости - м/с. На практике используют еди­ницу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром.

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это измене­ние произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле а = (v – v 0)/t. Единица измерения ускорения - м/с 2 .

Характеристики механического движения свя­заны между собой основными кинематическими уравнениями.

s = v 0 t + at 2 / 2;

v = v 0 + at.

Предположим, что тело движется без уско­рения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид: v = const, s = vt .

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­ваютравномерным прямолинейным движением.

Во время старта скорость ракеты быстро воз­растает, т. е. ускорение а > О, а == const.

В этом случае кинематические уравнения вы­глядят так: v = v 0 + at, s = V 0 t + at 2 / 2.

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называютравноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, ускорение меньше нуля; так как скорость уменьшается, то уравнения принимают вид:v = v 0 + at, s = v 0 t - at 2 / 2 . Такое движение называют равнозамедленным.

Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при пере­ходе из одной системы к другой, т. е. характер дви­жения зависит от выбора системы отсчета, в этом и проявляется относительность движения. Например, в воздухе происходит дозаправка самолета топливом. В системе отсчета, связанной с самолетом, другой самолет находится в покое, а в системе отсчета, свя­занной с Землей, оба самолета находятся в движе­нии. При движении велосипедиста точка колеса в системе отсчета, связанной с осью, имеет траекто­рию, представленную на рисунке 1.

Рис. 1 Рис. 2

В системе отсчета, связанной с Землей, вид траектории оказывается другим (рис. 2).

Билет№3

Взаимодействие тел. Сила. Законы Ньютона

Закон. Существуют такие системы отсчета, называемые инерциальными, относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела.

Закон. При взаимодействии тел возникают силы, равные по величине, противоположные по направлению, направленные вдоль одной прямой, одинаковые по природе и приложенные к разным телам.

План ответа

Взаимодействие тел. 2. Виды взаимодейст­вия. 3. Сила. 4. Силы в механике.

Простые наблюдения и опыты, например с те­лежками (рис. 3), приводят к следующим качествен­ным заключениям: а) тело, на которое другие тела не действуют, сохраняет свою скорость неизменной;

б) ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действия тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчета.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или, чем ближе два одно­именных заряда, тем сильнее они будут притяги­ваться. В простейших случаях взаимодействия коли­чественной характеристикой является сила. Сила - причина ускорения тел по отношению к инерциальной системе отсчета или их деформации. Сила - это

векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимо­действии. Сила характеризуется: а) модулем; б) точ­кой приложения; в) направлением.

Единица измерения силы - ньютон. 1 нью­тон - это сила, которая телу массой 1 кг сообщает ускорение 1 м/с в направлении действия этой силы, если другие тела на него не действуют. Равнодей­ствующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу.

R=F1+F2+...+Fn,.

Качественно по своим свойствам взаимодей­ствия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием заря­дов у частиц либо с движением заряженных частиц. Наиболее просто рассчитать силы в электродинами­ке: сила Ампера - F = IlBsina, сила Лоренца - F=qv Bsin a., кулоновская сила - F = q 1 q 2 /r 2 ; и гравитационные силы: закон всемирного тяготе­ния-F = Gm 1 m 2 /r 2 . Такие механические силы, как

сила упругости и сила трения, возникают в резуль­тате электромагнитного взаимодействия. Для их рас­чета необходимо использовать формулы: .Fynp = -kx (закон Гука), Fтр = MN - сила трения.

На основании опытных данных были сформу­лированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо про­порционально равнодействующей всех сил, дей­ствующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействую­щая сила: а = F/m.

Для решения задач закон часто записывают в виде: F = та.

Билет4

Импульс тела. Закон сохранения импульса в природе и технике

План ответа

1. Импульс тела. 2. Закон сохранения импуль­са. 3. Применение закона сохранения импульса. 4. Реактивное движение.

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зави­сит от выбора системы отсчета; по второму закону Ньютона, независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движе­ния может происходить только при действии силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохра­няться при взаимодействии тел. Такими величинами являются энергия и импульс.

Импульсом тела называют векторную физи­ческую величину, являющуюся количественной ха­рактеристикой поступательного движения тел. Им­пульс обозначается р. Единица измерения импульса Р - кг м/с. Импульс тела равен произведению мас­сы тела на его скорость: р = mv. Направление векто­ра импульса р совпадает с направлением вектора скорости тела v (рис. 4).

Рис. 4

Для импульса тел выполняется закон сохране­ния, который справедлив только для замкнутых фи­зических систем. В общем случае замкнутой назы­вают систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механикезамкнутой называют систему, на кото­рую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае р 1 = р 2 где р 1 - начальный импульс системы, а р 2 - конеч­ный. В случае двух тел, входящих в систему, это вы­ражение имеет вид m 1 v 1 + т 2 v 2 = m 1 v 1 " + т 2 v 2 " где т 1 и т 2 - массы тел, а v 1 и v 2 , - скорости до взаимодей­ствия, v 1 " иv 2 " - скорости после взаимодействия. Эта формула и является математическим выражением закона сохранения импульса:импульс замкнутой физической системы сохраняется при любых вза­имодействиях, происходящих внутри этой системы.

Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия. В случае незамкнутой системы импульс тел системы не сохраняется. Одна­ко, если в системе существует направление, по кото­рому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимо­действия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействую­щих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения им­пульса.

Экспериментальные исследования взаимодей­ствий различных тел - от планет и звезд до атомов и элементарных частиц - показали, что в любой си­стеме взаимодействующих тел при отсутствии дей­ствия со стороны других тел, не входящих в систему или равенстве нулю суммы действующих сил, гео­метрическая сумма импульсов тел действительно остается неизменной.

В механике закон сохранения импульса и за­коны Ньютона связаны между собой. Если на тело массой т в течение времени t действует сила и ско­рость его движения изменяется от v 0 до v, то уско­рение движения a тела равно a = (v - v 0)/t. На осно­вании второго закона Ньютона для силы F можно записать F = та = m(v - v 0)/t, отсюда следует Ft = mv - mv 0 .

Ft - векторная физическая величина, харак­теризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время t ее действия, называетсяимпульсом силы.

Единица импульсав СИ - Н с.

Закон сохранения импульса лежит в основе реактивного движения.Реактивное движение - это такое движение тела, которое возникает после отде­ления от тела его части.

Пусть тело массой т покоилось. От тела отде­лилась какая-то его часть т 1 со скоростью v 1 . Тогда

оставшаяся часть придет в движение в противопо­ложную сторону со скоростью v 2 , масса оставшейся части т 2 Действительно, сумма импульсов обоих частей тела до отделения была равна нулю и после разделения будет равна нулю:

т 1 v 1 +m 2 v 2 = 0, отсюда v 1 = -m 2 v 2 /m 1 .

Большая заслуга в развитии теории реак­тивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рас­считал запасы топлива, необходимые для преодоле­ния силы земного притяжения; основы теории жид­костного реактивного двигателя, а так же элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одно­временно) и последовательный (реактивные двигате­ли работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигате­лем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспе­чения на них. Технические идеи Циолковского нахо­дят применение при создании современной ракетно-космической техники. Движение с помощью реак­тивной струи, по закону сохранения импульса, ле­жит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактив­ный принцип.

Физика

Масса тела

Взаимодействие тел. Причиной изменения скорости движения тела всегда являетя его взаимодействие с другими телами.

Постоянство отношения модулей ускорений. При взаимодействии двух тел всегда изменяются скорости и первого, и второго тела, т.е. оба тела приобретают ускорения. Модули ускорений двух взаимодействующих тел могут быть различными, но их отношение оказывается постоянным при любых взаимодействиях:

Инертность тел. Постоянство отношения модулей ускорений двух тел при любых их взаимодействиях показывает, что тела обладают каким-то свойством, от которого зависит их ускорение при взаимодействиях с другими телами.

Чем меньше изменяется скорость тела при взаимодействии с другими телами, тем ближе его движение к равномерному прямолинейному движению по инерции. Такое тело называют более инертным.

Свойством инертности обладают все тела. Оно состоит в том, что для изменения скорости тела при взаимодействии его с другими телами требуется некоторое время.

Масса тела. Свойство тела, от которого зависит его ускорение при взаимодействии с другими телами, называется инертностью . Количественной мерой инертности является масса тела. Чем большей массой обладает тело, тем меньшее ускорение оно получает при взаимодействии.

Поэтому в физике принято, что отношение масс взаимодействующих тел равно обратному отношению модулей ускорений :

m 1 /m 2 =a 2 /a 1 (5.2)
Масса тела - это физическая величина, характеризующая его инертность.

Плотность вещества. Отношение массы m тела к его объёму V называется плотностью вещества:

Плотность выражается в килограммах на кубический метр , единицей плотности является 1 кг/м 3 .

Copyright © 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки

Взаимодействие - это действие, которое взаимно. Все тела способны между собой взаимодействовать при помощи инерции, силы, плотности вещества и, собственно, взаимодействия тел. В физике действие двух тел или системы тел друг на друга называется взаимодействием. Известно, что при сближении тел меняется характер их поведения. Эти изменения носят взаимный характер. При разведении тел на значительные расстояния взаимодействия исчезают.

При взаимодействии тел его результат всегда ощущают на себе все тела (ведь при воздействии на что-то всегда следует отдача). Так, например, в бильярде при ударе кием по шару последний отлетает намного сильнее, чем кий, что объясняется инертностью тел. Виды и мера взаимодействия тел определяются именно этой характеристикой. Одни тела менее инертны, другие более. Чем больше масса тела, тем больше его инертность. Тело, при взаимодействии изменяющее свою скорость медленнее, имеет большую массу и более инертно. Тело, быстрее изменяющее свою скорость, имеет меньшую массу и является менее инертным.

Сила - это мера, измеряющая взаимодействие тел. Физика выделяет четыре вида взаимодействий, не сводящихся друг к другу: электромагнитное, гравитационное, сильное и слабое. Чаще всего взаимодействие тел совершается при их соприкосновении, которое ведет к изменению скоростей данных тел в что измеряется действующей между ними силой. Так, чтобы привести в движение заглохший автомобиль, подталкиваемый руками, необходимо приложить силу. Если его необходимо толкать в гору, то делать это гораздо тяжелее, поскольку для этого понадобится большая сила. Лучшим вариантом при этом будет прикладывание силы, направленной вдоль дороги. В данном случае указываются величина и направление силы (отметим, сила является векторной величиной).

Взаимодействие тел происходит также под действием механической силы, следствием которой является механическое перемещение тел или их частей. Сила не является предметом созерцания, она причина движения. Всякое действие одного тела по отношению к другому проявляет себя в движении. Примером действия механической силы, порождающей движение, служит так называемый эффект "домино". Искусно расставленные костяшки домино падают одна за другой, передавая движение дальше по ряду, если толкнуть первую костяшку. Происходит передача движения от одной инертной фигурки к другой.

Взаимодействие тел при соприкосновении может приводить не только к замедлению или ускорению их скоростей, но и к их деформации - изменению объема или формы. Ярким примером может служить лист бумаги, сжатый в руке. Действуя на него силой, мы приводим к ускоренному движению частей данного листа и его деформации.

Любое тело сопротивляется деформации, когда его пытаются растянуть, сжать, согнуть. Со стороны тела начинают действовать силы, препятствующие этому (упругость). Сила упругости проявляется со стороны пружины в момент ее растяжения или сжимания. Груз, который тянут по земле за веревку, ускоряется, потому что действует сила упругости растянутого шнура.

Взаимодействие тел во время скольжения вдоль разделяющей их поверхности не вызывает их деформации. В случае, например, скольжения карандаша по гладкой поверхности стола, лыж или санок по утрамбованному снегу, действует сила, препятствующая скольжению. Это сила трения, зависящая от свойств поверхностей взаимодействующих тел и от прижимающей их друг к другу силы.

Взаимодействие тел может происходить и на расстоянии. Действие называемых также гравитационными, происходит между всеми телами вокруг, что может быть заметно лишь тогда, когда тела имеют размеры звезд или планет. формируется из гравитационного притяжения любого астрономического тела и которые вызваны их вращением. Так, Земля притягивает к себе Луну, Солнце притягивает Землю, поэтому Луна совершает обороты вокруг Земли, а Земля, в свою очередь, вращается вокруг Солнца.

На расстоянии действуют также электромагнитные силы. Несмотря на отсутствие касания какого-либо тела, стрелка компаса всегда будет поворачиваться вдоль линии магнитного поля. Примером действия электромагнитных сил является и нередко возникающее на волосах при расчесывании. Разделение зарядов на них происходит из-за силы трения. Волосы, заряжаясь положительно, начинают отталкиваться друг от друга. Подобная статика часто возникает при надевании свитера, ношении головных уборов.

Теперь вы знаете о том, что такое взаимодействие тел (определение оказалось довольно развернутым!).

Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение

Механическим движением называют измене­ние положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля; тело, относительно которого рассматривается движение, его называюттелом отсчета. Система ко­ординат, тело отсчета, с которым она связана, и вы­бранный способ измерения времени образуютси­стему отсчета. размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой, Линию, вдоль которой движется материальная точка, называют траекторией. Длина части траектории между начальным и конечным положением точки называют путем (L). Единица измерения пути - 1м.

Механическое движение характеризуется тре­мя физическими величинами: перемещением, ско­ростью и ускорением.

Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называетсяперемещением (s), Перемещение - величина векторная Единица изме­рения перемещения-1м.

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Определяющая формула скорости имеет вид v = s/t. Единица изме­рения скорости - м/с. На практике используют еди­ницу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром.

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это измене­ние произошло. ускорение можно рассчитать по формуле а = (v – v 0)/t. Единица измерения ускорения - м/с 2 .

Характеристики механического движения свя­заны между собой основными кинематическими уравнениями.

s = v 0 t + at 2 / 2;

v = v 0 + at.

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­ваютравномерным прямолинейным движением.

скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называютравноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, Такое движение называют равнозамедленным.

Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при пере­ходе из одной системы к другой, т. е. характер дви­жения зависит от выбора системы отсчета, в этом и проявляется относительность движения.


Билет №2

Взаимодействие тел. Сила. Второй закон Ньютона

коли­чественной характеристикой взаимодействия является сила. Сила - причина ускорения тел по отношению к инерциальной системе отсчета или их деформации. Сила - это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимо­действии. Сила характеризуется: а) модулем; б) точ­кой приложения; в) направлением.

Единица измерения силы - ньютон. 1 нью­тон - это сила, которая телу массой 1 кг сообщает ускорение 1 м/с в направлении действия этой силы, если другие тела на него не действуют. Равнодей­ствующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу.

R=F1+F2+...+Fn,.

На основании опытных данных были сформу­лированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо про­порционально равнодействующей всех сил, дей­ствующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействую­щая сила: а = F/m.

Для решения задач закон часто записывают в виде: F = та.

Третий закон является обобщением и звучит так: Тела действуют друг на друга с силами рвными по модулю и противоположными по направлению.

Первый закон: существуют такие системы отсчета, относительно которых поступательно движущиеся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действие других тел компенсирутся).


Вам уже известно, что тела, если бы на них не действовали другие тела, трение и сопротивление воздуха, постоянно бы двигались или находились в состоянии покоя.
Давайте проведем опыт.
Прикрепленную к тележке пластину согнем и перевяжем нитью. Если поджечь нить — пластина разогнется, но при этом тележка окажется на том же месте.
Повторим этот опыт с двумя одинаковыми тележками. К согнутой пластине приставим еще одну такую же тележку. После того, как перегорит нить и пластина выпрямится, тележки переместятся на некоторое расстояние друг от друга. При действии одного тела на другое их скорость изменилась.
Таким образом, тела меняют свою скорость только при взаимодействии, то есть при действии одного тела на другое.
Понаблюдайте за игрой в бильярд или керлинг. При действии одного тела на другое, то есть при их взаимодействии, скорость изменяется у обоих тел.
Вспомните известный мультфильм «Приключения капитана Врунгеля». С помощью бутылок с шампанским он смог продолжил свой путь на яхте «Беда». Во время взаимодействия пробки от шампанского и самой бутылки оба этих тела двигались в противоположные стороны, тем самым придавали яхте движение вперед.
Проведем еще один опыт с тележками. Теперь на одну из тележек поставим дополнительный груз. Понаблюдаем, как изменятся скорости тележек при таких условиях.
Многие из вас, используя свой жизненный опыт, уже догадались, что произойдет.
После того как перегорит нить, тележки переместятся на некоторое расстояние. Конечно, тележка с дополнительным грузом изменит свою скорость меньше, чем без груза. Сравнивая изменение скоростей после взаимодействия, можем судить об их массах: если скорость одной тележки в три раза больше, то ее масса, соответственно, будет меньше в три раза.
Рассмотрим примеры.
По дороге движутся два автомобиля с одинаковой скоростью. Один автомобиль грузовой, другой - легковой. Какому из них понадобиться больше времени для того, чтобы остановиться?
Очевидно, что больше времени для остановки понадобиться грузовому автомобилю.
Какую тележку тяжелее сдвинуть с места: пустую или полностью нагруженную? Тяжелее сдвинуть с места нагруженную тележку.
Сделаем вывод: тело большей массы более инертно, то есть дольше «пытается» сохранять свою скорость неизменной. Тело меньшей массы менее инертно, так как его скорость изменяется больше.
Таким образом, мерой инертности тел является масса тела.
Масса тела — это физическая величина, которая является мерой инертности тела.
Массу тела можно найти не только сравнивая изменение скоростей тел при их взаимодействии, но и путем взвешивания.
Массу обозначают буквой m «эм».
В международной системе единиц СИ за единицу массы принят один килограмм.
Килограмм — это масса эталона. Международный эталон килограмма хранится во Франции. В соответствии с эталоном изготовлено 40 точнейших копий, одна из которых хранится в России, а именно в Санкт-Петербурге в Институте метрологии.
Для измерения массы используют и другие единицы: тонна, грамм, миллиграмм.
1т=1000кг
1 кг=1 000г
1кг=1 000 000мг
1г=0,001кг
1 мг=0,000001кг
Массу тела можно определить при помощи весов. В жизни вам встречались различные виды весов:
-рычажные,
-пружинные,
-электронные.
Мы будем использовать лабораторные весы. Их еще называют рычажными весами. Принцип взвешивания на рычажных весах заключается в уравновешивании. На одну чашу весов помещают тело, массу которого необходимо узнать. На другую чашу весов помещают гири, масса которых нам известна.
В состоянии равновесия суммарная масса гирь будет равна массе взвешиваемого тела.
При взвешивании должны соблюдаться определенные правила:
1. Проверьте чаши весов перед началом взвешивания: они должны находиться в равновесии.
2. Взвешиваемое тело положите на левую чашу весов, а гири на правую.
3. Уравновесив обе чаши, подсчитайте общую массу гирь, которая вам понадобилась.
Запомните, что при взаимодействии двух тел их скорости изменяются. Скорость изменяется больше у того тела, масса которого меньше и наоборот. Измерив скорости, мы сможем вычислить массу тела. А также массу тела мы можем определить с помощью весов.