Математические модели могут. Математическая модель на практике. Проверка aдеквaтности осуществляется на тестовых экспериментах путем сравнения результатов рaсчетa по модели с результaтaм эксперимента на изучаемом объекте при одинаковых условиях. Это позво

Математические модели различают в основном по характеру отображаемых свойств системы, степени их детализации, способам получения и формального представления.

Структурные и функциональные модели. Если ММ отображает элементы и их связи в системе, то ее называют структурной математической моделью . Если же ММ отражает происходящие в системе какие-либо процессы, то ее относят к функциональным математическим моделям . Ясно, что могут существовать и смешанные ММ, которые описывают как функциональные, так и структурные свойства системы. Структурные ММ делят на топологические и геометрические, составляющие два уровня иерархии ММ этого типа. Первые отображают состав системы и связи между его элементами. Топологические ММ целесообразно применять на начальной стадии исследования сложной системы. Такая ММ имеет форму графов, таблиц, матриц, списков и т.п., и ее построению обычно предшествует разработка структурной схемы системы.

Геометрическая ММ дополнительно к информации, представленной в топологической ММ, содержит сведения о форме и размерах системы и ее элементов, об их взаимном расположении. В геометрическую ММ обычно входят совокупность уравнений линий и поверхностей и алгебраические соотношения, опре­деляющие принадлежность областей пространства системе или ее элементам. Геометрические ММ находят применение при проектирова­нии элементов технических систем, разработке технической документации и технологических процессов изготовления изделий.

Функциональные ММ состоят из соотношений, связываю­щих между собой фазовые переменные, т.е. внутренние, внеш­ниеи выходные параметры системы. Функционирование сложных систем нередко удается описать лишь при помощи совокупности ее реакций на некоторые известные (или заданные) входные воздействия. Такую разновидность функциональной ММ относят к типу черного ящика и обычно называют ими­тационной математической моделью,имея в виду, что она лишь имитирует внешние проявления функционирования, не раскрывая и не описывая существа протекающих в системе процессов. Имитационные ММ находят широкое применение в исследовании сложных систем.

По форме представления имитационная ММ является примером алгоритмической ММ , поскольку связь в ней между входными и выходными параметрами системы удается описать лишь в форме алгоритма, пригодного для реализации в виде программы. К типу алгоритмических ММ относят широкий класс как функциональных, так и структурных ММ. Если связи междупараметрами системы можно выразить в аналитической форме, то говорят об аналитических математических моделях. При созданиииерархии ММ одной и той же системы обычно стремятся к тому, чтобы упрощенный вариант ММ был представлен в аналитической форме, допускающей точное решение, которое можно было бы использовать для сравнения при тестировании результатов, полученных при помощи более полных и поэтому более сложных вариантов ММ.

Ясно, что ММ конкретной системы по форме представления может включать признаки как аналитической, так и алгоритмической ММ. Более того, в процессе моделирования аналитическую ММ преобразуют в алгоритмическую.

По способу получения математические модели могут быть теоретическими илиэмпирическими . Первые получают в результате изучения свойств системы, протекающих в ней процессов на основе использования известных фундаментальных законов со­хранения, а также уравнений равновесия, а вторые являются итогом обработки результатов внешних наблюдений за проявлением этих свойств и процессов. Один из способов построения эмпирических ММ заключает­ся в проведении экспериментальных исследований, связанных с измерением фазовых переменных системы, и в последующем обоб­щении результатов этих измерений в алгоритмической форме или в виде аналитических зависимостей. Поэтому по форме представления эмпириче­ская ММ может содержать признаки как алгоритмической,так и аналитической ММ. Таким образом, построение эмпирической ММ сводится к решению задачи идентификации .

Особенности функциональных моделей. Одной из характерных особенностей функциональной ММ является наличие или отсутствие среди ее параметров случайных величин. При наличии таких величин ММ называют стохастической (или вероятностной), а при их отсутствии - детерминированной .

Далеко не все параметры реальных систем можно характеризовать вполне определенными значениями. Поэтому ММ таких систем, строго говоря, следует отнести к стохастическим, поскольку выходные параметрысистемыбудут случайными величинами. Случайными могут быть и значения внешних параметров.

Для анализа стохастических ММ необходимо использовать выводы теории вероятностей, случайных процессов и математической статистики. Однако основная трудность в их примене­нии обычно связана с тем, что вероятностные характеристики случайных величин (математические ожидания, дисперсии, законы распределения) часто не известны или известны с не высокой точностью, т.е. ММ не удовлетворяет требованию продуктивности. В таких случаях эффективнее использовать ММ, более грубую по сравнению со стохастической, но и более устойчивую по отношению к недостоверности исходных данных.

Существенным признаком классификации ММ является их возможность описывать изменение параметров системы во времени. Если при этом в ММ отражено влияние инерци­онных свойств системы, то ее обычно называют динамической . В противоположность этому ММ, которая не учитывает изме­нение во времени параметров системы, называют статической.

Стационарные ММописывают системы, в которых протекают так называемые установившиеся процессы, т.е. процессы, в которых инте­ресующие нас выходные параметры постоянны во времени. К установившимся относят и периодические процессы, в кото­рых некоторые выходные параметры остаются неизменными, а остальные претерпевают колебания.

Если выходные параметры системы изменяются медленно и в рассматриваемый фиксированный момент времени этими изменениями можно пренебречь, то считают ММ нестационарной .

Важным с точки зрения последующего анализа свойством ММявляется ее линейность, в смысле связи параметров системы линейными соотношениями. Это означает, что при изменении какого-либо внешнего (или внутреннего) параметра системы линейная ММ предсказывает линейное изменение зависящего от него выходного параметра, а при изменении двух или более параметров - сложение их влияний, т.е. такая ММ обладает свойством суперпозиции . Если ММ не обладает свойством суперпозиции, то ее называют нелинейной.

Для количественного анализа линейных ММ разработано большое число математических методов, тогда как возможности анализа нелинейных ММ связаны в основном с методами вычислительной математики. Чтобы для исследования нели­нейной ММ системы можно было использовать аналитические методы, ее обычно линеаризуют, т.е. нелинейные соотношения между параметрами заменяют приближенными линейными и получают так называемую линеаризованную ММсистемы. Так как линеаризация связана с внесением дополнительных погрешностей, то к результатам анализа линеаризованной модели следует относиться с определенной осторожностью. Дело в том, что линеаризация ММ может привести к утрате адекватности ее. Учет в ММ нелинейных эффектов особенно важен, например, при описании смены форм движения или положений равновесия, когда малые изменения входных параметров могут вызвать качественные изменения в состоянии системы.

Каждый параметр системы может быть двух типов - непрерывно изменяющимся в некотором промежутке своих значений или принимающим только некоторые дискретные значения. Возможна и промежуточная ситуация, когда в одной области параметр принимает все возможные значения, а в другой - только дискретные. В связи с этим выделяют непрерывные дискретные и смешанные математические модели. Впроцессе анализа ММ этих типов могут быть преобразованы одна в другую, но при таком преобразовании следует контролировать выполнение требования адекватности ММрассматриваемой системе.

Формы представления математических моделей. При математическом моделировании сложной системы описать ее поведение одной ММ, как правило, не удается, а если такая ММ и была бы построена, то она оказалась бы слишком сложной для количественного анализа. Поэтому к таким системам обычно применяют принцип декомпозиции . Он состоит в условном разбиении системы на подсистемы, допускающие их независимое исследование с последующим учетом их взаимного влияния друг на друга. В свою очередь, принцип декомпозиции можно применить и к каждой выделенной подсистеме вплоть до уровня достаточно простых элементов. В таком случае возникает иерархия ММсвязанных между собой подсистем. Иерархические уровни выделяют и для отдельных типов ММ. Например, среди структурныхММ системк более высокому уровню иерархии относят топологическиеММ, а к более низкому уровню, характеризующемуся большей детализацией, - геометрическиеММ. Среди функциональныхММиерархические уровни отражают степень детализации описания процессов, протекающих в системе и ее элементах. С этой точки зрения обычно выделяют три основных уровня: микро - макро - и мета-уровень.

Математические модели микроуровня описывают процессы в системах с распределенными параметрами, а математические модели макроуровня - в системах с сосредоточенными параметрами. В первых из них фазовые переменные могут зависеть как от времени, так и от пространственных координат, а во вторых - только от времени.

Если в ММ макроуровня число фазовых переменных имеет порядок 10 4 -10 5 , то количественный анализ такой ММ ста­новится громоздким и требует значительных затрат вычислительных ресурсов. Кроме того, при столь большом числе фазовых переменных трудно выделить существенные характеристики системы и особенности ее поведения. В таком случае путем объединения и укрупнения элементов сложной системы стремятся уменьшить число фазовых переменных за счет исключения из рассмотрения внутренних параметровэлементов, ограничиваясь, лишь описанием взаимных связей между укрупненными элементами. Такой подход характерен для ММ метауровня .

Наиболее распространенной формой представления динами­ческой (эволюционной ) ММ микроуровня является формулировка краевой задачи для дифференциальных уравнений математической физики. Такая формулировка включает дифференциальные уравнения с частными производ­ными и краевые условия. В свою очередь краевые условия со­держат начальные и граничные условия. К начальным условиям относят распределения искомых фазовых переменных в некоторый момент времени. Границы же пространственной области, конфигурация которой соответствует рассматриваемому элементу или системе в целом являются граничными условиями. При представле­нии ММ целесообразно использовать безразмерные переменные и коэффициенты уравнений.

ММ микроуровня называют одномерной, двумернойили трехмерной, если искомые фазовые переменные зависят от одной, двух или трех пространственных координат соответственно. Два последних типа ММ объединяют в многомерные математические модели микроуровня.

Моделирование как метод разработки управленческого решения используется с середины XX века. Первые модели базировались на нормативных теориях и назывались нормативными. В них описывается стратегия поведения при выработке решения, ориентирующая на заданный критерий. Примером нормативных моделей являются:

Модели принятия статистических решений с использованием теории вероятности и математической статистики;

Инновационные игры как вариант нормативной модели поведения в условиях конфликта, наличия разноречивых мнений по проблемам нововведения;

Модели разработки решений на основе теории массового обслуживания, содержащие нормативные критерии при решении конкретных задач.

Однако нормативные модели не учитывают при принятии решений реального поведения человека, за которым остается выбор окончательного варианта. Этот "недостаток" в определенной мере компенсируют дескриптивные модели разработки решений, основанные на теории полезности, теории риска.

В настоящее время выделяется три основных подхода к построению моделей процесса разработки решений (математическому моделированию),основанных на:

1) теории статистических решений;

2) теории полезности;

3) теории игр.

Наиболее разработаны модели на основе теории статистических решений. В них считаются заданными:

Возможное распределение изучаемого случайного процесса;

Пространство возможных окончательных решений;

Стоимость вариантов решений;

Функция возможного убытка для каждого решения, соответствующего определенному состоянию внешней среды.

В общем виде можно констатировать, что решения принимаются, исходя из максимума прибыли или минимума потерь. В связи с этим вводится понятие риска, по величине которого судят о ценности решения. В этой теории рассматривается ряд возможных критериев оптимальности принимаемых решений. Так, решение, минимизирующее максимальный риск (байесовское решение), описывается как минимаксное решение. Статистическая теория решения применяется при выборе решений в условиях неопределенности внешней среды.

Второе направление математического моделирования связано с использованием теории полезности, основанной на индивидуальных предпочтениях, субъективной оценке вероятно-стей наступления событий внешней среды.

Третье направление моделей разработки решений основано на использовании теории игр. Данная теория применяется в условиях конфликтных ситуаций либо при принятии коллективных (совместных) решений. Основополагающим является выбор отправной точки (гарантирующего решения), с которой начинается совместная выработка лучшего решения. Основной принцип этой теории - минимакс. Схема теории игр описывает принципы принятия решений для широкого класса практических ситуаций инновационного характера. Игра возможна с любым числом участников и различной степенью их информированности. Формализации подвергаются лишь правила игры, а не поведение игроков.


Приведенные теории и подходы к моделированию процесса разработки решений отражают определенные его стороны:

статистическая теория решений - неопределенность среды, выбор, риск;

теория игр - некоторые характеристики поведения человека в условиях взаимодействия с другими людьми и со средой;

теория полезности - психологические представления о потребностях человека и его мотивации.

Разновидностью разработки решений являются эвристические модели. Впервые авторы Саймон и Ньюэл использовали термин "эвристический" (греческое "эурискеин" - делаю открытие) для характеристики особого подхода к решению задач и выбору решений. Основу эвристических моделей составляют логика и здравый смысл, основанные на имеющемся опыте. Такие модели используются в ситуациях, когда невозможно применение формальных аналитических методов. Сущность эвристических методов состоит в преобразовании одной сложной задачи в совокупность простых, поддающихся изучению математическими способами. Эвристическими моделями не решаются задачи оптимизации решений, но оценивается относительная пригодность конкретных стратегий с определенными ограничениями. На основе построения модели логических связей в ходе рассуждений ЛПР может решаться широкий класс задач.

Эвристические модели используются при выборе решений для разрешения ситуаций кратковременных и повторяющихся, а также сложных и повторяющихся без надежды на использование при этом математического аппарата.

Практическое применение эвристического подхода к моделированию процесса разработки и принятия управленческих решений предполагает наличие у ЛПР познавательных способностей и склонностей к обобщениям и выводам.

Принятие решений на психологическом уровне не является изолированным процессом. Оно включено в контекст реальной деятельности человека. При построении моделей принятия решений важно знать, как развертываются процессы, предшествующие ему и следующие за ним. Необходимо исследовать внешнюю и внутреннюю среду, включая поиск, выделение, классификацию и обобщение информации о среде, сформировать альтернативы и сделать выбор.

Существует большое разнообразие математических моделей, отражающих реальные процессы, протекающие в экономической жизни предприятия. Их можно классифицировать по разным признакам (рис. 11).

Следует отметить, что вопрос о классификации моделей в теории принятия решений продолжает оставаться спорным. Краткая характеристика и направление использования конкретных моделей сводятся к следующему.

В моделях могут отражаться интересы участников экономического процесса. Если они (интересы) одинаковы (хотя бы при нескольких действующих лицах), то модели называются моделями с одним участником: если интересы участников расходятся - то игровыми моделями. В рыночной экономике игровые модели имеют значительное распространение.

Если в моделях отсутствует фактор времени, рассматривается процесс в конкретный момент или на фиксированном отрезке.времени, то такие модели называются статическими. Область применения этих моделей ограничивается краткосрочным прогнозированием. (Пример - статическая модель межотраслевого баланса).


В динамических моделях появляется возможность отразить во времени процесс функционирования и развития объекта управления. Фактор времени присутствует в явном виде (на­пример, долгосрочное прогнозирование развития спроса с использованием метода экстраполяции - в этом случае сложившаяся тенденция развития явления в прошлом времени переносится на будущее).

В детерминированных моделях каждому значению фактора (набору исходных данных) строго соответствует единственное значение результата, то есть существует функциональная связь. Частным случаем этого класса моделей являются квазирегулярные модели. Это модели динамики средних, описывающие процесс на основе средневзвешенных значений параметров модели. Они достаточно широко применяются в социально-экономических исследованиях. Их особенность состоит в том, что каждому значению аргумента соответствует определенная величина функции, то есть посредством модели можно получить вполне определенный результат (например, зависимость объема спроса от величины покупательных фондов населения).

Стохастические модели характеризуются более полным отражением действительности, они ближе к реальным процессам, гдеотсутствует жесткая детерминация. Например, на одинаковом оборудовании может быть разная производительность труда. Данный класс моделей носит вероятностный характер, так как они подсказывают результат с некоторой уверенностью. В данном классе моделей выделяют две разновидности: вероят­ностные и статистические модели.

Вероятностные модели используют вероятностные значения параметров процесса. Однако математическая структура веро­ятностных моделей строго детерминирована. Для каждого на­бора исходных данных в моделях определяется единственное распределение вероятностей случайных событий в рассматри­ваемом процессе. Для реализации вероятностных моделей не­обходимо, чтобы каждому состоянию отдельного элемента сис­темы соответствовала вероятность его попадания в это состоя­ние.

Для отображения этой моделью динамики функционирова­ния предприятия необходимо разделить траекторию возможных состояний каждого элемента системы на определенное (дискретное) число состояний и определить вероятности перехода этого элемента из одного состояния в другое с учетом взаимного влияния элементов.

В статистических моделях каждому набору исходных данных соответствует в модели какой-либо случайный результат из множества возможных. Таким образом, каждое решение предлагает одну случайную реализацию результатов моделируемого

процесса.

Одним из эффективных приемов исследования экономических систем, используемых в процессе принятия управленческих решений, является динамическое моделирование. Оно представляет собой создание условной математической модели деятельности предприятия и ее эффективности, по которой про­слеживаются изменения, происходящие в управляемом объекте под влиянием мер, преднамеренно предпринимаемых в процессе управления, а также под реальным воздействием внутренней и внешней среды. Схема такова:

Технология динамического моделирования включает:

1) определение проблемы, которая должна быть решена в управляемой системе;

2) установление факторов, которые могут проявить себя при решении проблемы, то есть выявление причинно-следственных связей и их влияния на результаты работы предприятия;

3) определение количественного выражения этих связей. Математическая модель динамического моделирования представляет собой систему этих связей и их количественное выражение. Создание такой модели - сложная и трудоемкая работа. Представляется оправданным использование типовых моделей с последующим их приспособлением к нуждам конкретного предприятия.

Необходимость использования динамического моделирования вызвана следующими причинами:

1) суждения руководителей о решениях, последствиях, которые они могут вызвать, в значительной мере субъективны;

2) проведение экспериментов по принимаемым решениям, для их проверки, в экономическом и социальном плане сложная задача;

3) ряд обстоятельств, связанных с реализацией решений, трудно учесть логическим путем;

4) действие внешней среды трудно предвидеть;

5) положительный эффект на одном участке предприятия может отражаться негативно на других участках объекта управ-ления.

Особенность динамического моделирования состоит в том, что, какими бы ни были первоначальное состояние и первоначальное решение, все последующие решения должны исходить из состояния, полученного в результате предыдущего решения.

Где f i (x i) - прирост выпуска по г-му направлению при выделении x i ресурсов,

J i (x) - суммарный прирост выпуска по направлениям от первого до i -го при выделении х ресурсов.

Многошаговость отражает реальное протекание процесса принятия решения либо искусственное расчленение процесса принятия однократного решения на отдельные этапы и шаги.

Сетевое моделирование весьма эффективно на всех этапах разработки решений: в ходе поиска решений, выбора оптимального варианта и контроля за реализацией решений. Положительными признаками его являются детализация проблемы, конкретизация ответственности, улучшение оперативного руководства и контроля, рациональное использование ресурсов и времени (подробное изложение в главе 8).

В системе моделирования хозяйственных явлений часто используются матричные модели, в которых совмещаются математические средства с наглядным отображением взаимосвязи разделов плана (или отчета) предприятия. В матричной модели ресурсы (производственные мощности, трудовые, материальные ресурсы, технологические нормативы) выражаются в сочетании с объемами производства, затратами (трудовыми, финансовыми, материальными) за определенный период, степенью использования ресурсов по их видам.

Матричная модель эффективно используется для выявления взаимосвязей между различными сторонами деятельности предприятий, возникающих в результате выполнения какого-либо управленческого решения. По существу матричная модель представляет собой один из видов балансовых моделей.

После создания математической модели производят пробные расчеты (в том числе с помощью вычислительных машин) для проверки степени близости модели к реальной действительности. По результатам сравнения осуществляется корректирование: либо модели, если она не соответствует действительности, либо меняются взаимоотношения в организации и правила принятия управленческих решений, если модель выявила их несовершенство. Одной из разновидностей являются имитационные модели, рассчитанные на использование ЭВМ, которые рассматриваются в следующем параграфе.

КОНСПЕКТ ЛЕКЦИЙ

По курсу

«Математическое моделирование машин и транспортных систем»


В курсе рассмотрены вопросы, связанные с математическим моделированием, с формой и принципом представления математических моделей. Рассмотрены численные методы решения одномерных нелинейных систем. Освещаются вопросы компьютерного моделирования и вычислительного эксперимента. Рассмотрены методы обработки данных, полученных в результате научных или производственных экспериментов; исследования различных процессов, выявления закономерностей в поведении объектов, процессов и систем. Рассмотрены методы интерполирования и аппроксимации опытных данных. Рассмотрены вопросы, связанные с компьютерным моделированием и решением нелинейных динамических систем. В частности, рассмотрены методы численного интегрирования и решения обыкновенных дифференциальных уравнений первого, второго и более высоких порядков.


Лекция: Математическое моделирование. Форма и принципы представления математических моделей

В лекции рассмотрены общие вопросы математического моделирования. Приведена классификация математических моделей.

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Моделирование широко используются в различных сферах человеческой деятельности, особенно в сферах проектирования и управления, где особенными являются процессы принятия эффективных решений на основе получаемой информации.


Модель всегда строится с определенной целью, которая оказывает влияние на то, какие свойства объективного явления оказываются существенными, а какие - нет. Модель представляет собой как бы проекцию объективной реальности под определенным углом зрения. Иногда в зависимости от целей можно получить ряд проекций объективной реальности, вступающих в противоречие. Это характерно, как правило, для сложных систем, у которых каждая проекция выделяет существенное для определенной цели из множества несущественного.

Теорией моделирования является раздел науки, изучающий способы исследования свойств объектов-оригиналов, на основе замещения их другими объектами-моделями. В основе теории моделирования лежит теория подобия. При моделировании абсолютное подобие не имеет места и лишь стремится к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта. Абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же.

Все модели можно разделить на два класса:

1. вещественные,

2. идеальные.

В свою очередь вещественные модели можно разделить на:

1. натурные,

2. физические,

3. математические.

Идеальные модели можно разделить на:

1. наглядные,

2. знаковые,

3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.

Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Остановимся на одном из наиболее универсальных видов моделирования - математическом, ставящим в соответствие моделируемому физическому процессу систему математических соотношений, решение которой позволяет получить ответ на вопрос о поведении объекта без создания физической модели, часто оказывающейся дорогостоящей и неэффективной.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов

Ф i (X,Y,Z,t)=0,

где X - вектор входных переменных, X= t ,

Y - вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель. Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

1. аналитические;

2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),

2. аппроксимационные задачи (интерполяция, экстраполяция, численное интегрирование и дифференцирование),

3. задачи оптимизации,

4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование.

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

1. детерминированные,

2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

1. непрерывные,

2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

1. статические,

2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:

1. изоморфные (одинаковые по форме),

2. гомоморфные (разные по форме).

Модель называется изоморфной, если между нею и реальным объектом, процессом или системой существует полное поэлементное соответствие. Гомоморфной - если существует соответствие лишь между наиболее значительными составными частями объекта и модели.

В дальнейшем для краткого определения вида математической модели в приведенной классификации будем пользоваться следующими обозначениями:

Первая буква:

Д - детерминированная,

С - стохастическая.

Вторая буква:

Н - непрерывная,

Д - дискретная.

Третья буква:

А - аналитическая,

И - имитационная.

1. Отсутствует (точнее не учитывается) влияние случайных процессов, т.е. модель детерминированная (Д).

2. Информация и параметры - непрерывные, т.е. модель - непрерывная (Н),

3. Функционирование модели кривошипно-шатунного механизма описано в виде нелинейных трансцендентных уравнений, т.е. модель - аналитическая (А)

2. Лекция: Особенности построения математических моделей

В лекции описан процесс построения математической модели. Приведен словесный алгоритм процесса.

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

Для построения математической модели необходимо:

1. тщательно проанализировать реальный объект или процесс;

2. выделить его наиболее существенные черты и свойства;

3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;

4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);

5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;

6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

1. построение алгоритма, моделирующего поведение объекта, процесса или системы;

2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;

3. корректировка модели;

4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.

2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 2.1).

Рис. 2.1.

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:

1. Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями;

2. Пользуясь этой схемой, мы выводим уравнение движения механизма;

3. Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 – крайнее правое положение ползуна С:

r – радиус кривошипа AB;

l – длина шатуна BC;

– угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:

1. нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;

2. при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;

3. мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.

Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

Лекция 3. Компьютерное моделирование и вычислительный эксперимент. Решение математических моделей

Компьютерное моделирование как новый метод научных исследований основывается на:

1. построении математических моделей для описания изучаемых процессов;

2. использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности (проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.).

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

В заключение подчеркнем еще раз, что компьютерное моделирование и вычислительный эксперимент позволяют свести исследование "нематематического" объекта к решению математической задачи. Этим самым открывается возможность использования для его изучения хорошо разработанного математического аппарата в сочетании с мощной вычислительной техникой. На этом основано применение математики и ЭВМ для познания законов реального мира и их использования на практике.

В задачах проектирования или исследования поведения реальных объектов, процессов или систем математические модели, как правило, нелинейны, т.к. они должны отражать реальные физические нелинейные процессы, протекающие в них. При этом параметры (переменные) этих процессов связаны между собой физическими нелинейными законами. Поэтому в задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА.

Согласно классификации приведенной в лекции 1:

Д – модель детерминированная, отсутствует (точнее не учитывается) влияние случайных процессов.

Н – модель непрерывная, информация и параметры непрерывны.

А – модель аналитическая, функционирование модели описывается в виде уравнений (линейных, нелинейных, систем уравнений, дифференциальных и интегральных уравнений).

Итак, мы построили математическую модель рассматриваемого объекта, процесса или системы, т.е. представили прикладную задачу как математическую. После этого наступает второй этап решения прикладной задачи – поиск или разработка метода решения сформулированной математической задачи. Метод должен быть удобным для его реализации на ЭВМ, обеспечивать необходимое качество решения.

Все методы решения математических задач можно разделить на 2 группы:

1. точные методы решения задач;

2. численные методы решения задач.

В точных методах решения математических задач ответ удается получить в виде формул.

Например, вычисление корней квадратного уравнения:

или, например, вычисление производных функций:

или вычисление определенного интеграла:

Однако, подставляя числа в формулу в виде конечных десятичных дробей, мы все равно получаем приближенные значения результата.

Для большинства задач, встречающихся на практике, точные методы решения или неизвестны, или дают очень громоздкие формулы. Однако, они не всегда являются необходимыми. Прикладную задачу можно считать практически решенной, если мы сумеем ее решить с нужной степенью точности.

Для решения таких задач разработаны численные методы, в которых решение сложных математических задач сводится к последовательному выполнению большого числа простых арифметических операций. Непосредственная разработка численных методов относится к вычислительной математике.

Примером численного метода является метод прямоугольников для приближенного интегрирования, не требующий вычисления первообразной для подынтегральной функции. Вместо интеграла вычисляется конечная квадратурная сумма:

x 1 =a – нижний предел интегрирования;

x n+1 =b – верхний предел интегрирования;

n – число отрезков, на которые разбит интервал интегрирования (a,b);

– длина элементарного отрезка;

f(x i) – значение подынтегральной функции на концах элементарных отрезков интегрирования.

Чем больше число отрезков n, на которые разбит интервал интегрирования, тем ближе приближенное решение к истинному, т.е. тем точнее результат.

Таким образом, в прикладных задачах и при применении точных методов решения, и при применении численных методов решения результаты вычислений носят приближенный характер. Важно только добиться того, чтобы ошибки укладывались в рамки требуемой точности.

Численные методы решения математических задач известны давно, еще до появления ЭВМ, но ими пользовались редко и только в сравнительно простых случаях в силу чрезвычайной трудоемкости вычислений. Широкое применение численных методов стало возможным благодаря ЭВМ.

Понятие модели и моделирования.

Модель в широком смысле - это любой образ, аналог мысленный или установленный изображение, описание, схема, чертеж, карта и т. п. какого либо объема, процесса или явления, используемый в качестве его заменителя или представителя. Сам объект, процесс или явление называется оригиналом данной модели.

Моделирование - это исследование какого либо объекта или системы объектов путем построения и изучения их моделей. Это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

На идее моделирования базируется любой метод научного исследования, при этом, в теоретических методах используются различного рода знаковые, абстрактные модели, в экспериментальных - предметные модели.

При исследовании сложное реальное явление заменяется некоторой упрощенной копией или схемой, иногда такая копия служит лишь только для того чтобы запомнить и при следующей встрече узнать нужное явление. Иногда построенная схема отражает какие - то существенные черты, позволяет разобраться в механизме явления, дает возможность предсказать его изменение. Одному и тому же явлению могут соответствовать разные модели.

Задача исследователя - предсказывать характер явления и ход процесса.

Иногда, бывает, что объект доступен, но эксперименты с ним дорогостоящи или привести к серьезным экологическим последствиям. Знания о таких процессах получают с помощью моделей.

Важный момент - сам характер науки предполагает изучение не одного конкретного явления, а широкого класса родственных явлений. Предполагает необходимость формулировки каких - то общих категорических утверждений, которые называются законами. Естественно, что при такой формулировке многими подробностями пренебрегают. Чтобы более четко выявить закономерность сознательно идут на огрубление, идеализацию, схематичность, то есть изучают не само явление, а более или менее точную ее копию или модель. Все законы- это законы о моделях, а поэтому нет ничего удивительного в том, что с течением времени некоторые научные теории признаются непригодными. Это не приводит к краху науки, поскольку одна модель заменилась другой более современной .

Особую роль в науке играют математические модели, строительный материал и инструменты этих моделей - математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью. При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели - это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели - это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Математическое моделирование.

Классификация математических моделей.

Математические модели могут быть детерменированными и стохастическими .

Детерменированные модели- это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и расшифровка его механизма может оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получают стахостическую модель. В стахостической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими .

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными , а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели - все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Математическое моделирование.

Требования,п редъявляемые к моделям.

1. Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта.

    1. Адекватность - способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность - оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность - определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Математическое моделирование.

Основные этапы моделирования.

1. Постановка задачи.

Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических основ и сбор информации об объекте оригинала.

На этом этапе подбирается или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно - следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация.

Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

4. Выбор метода решения.

На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой - либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация модели.

Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

6. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1.1.2 2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

1.1.3 3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: "Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены". Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде всего, ответим на вопрос: что такое модель?

Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она позволяет получить новые знания об объекте, но, к сожалению, в той или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

  • распределение ресурсов
  • рациональный раскрой
  • транспортные перевозки
  • укрупнение предприятий
  • сетевое планирование.

Каким образом происходит построение математической модели?

  • Во–первых , формулируется цель и предмет исследования.
  • Во–вторых , выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– из вестна цель(или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

  • сложная система содержит много связей между элементами
  • реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен
  • возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование "Simujation modeling ".

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

–Большая близость к реальной системе, чем у математических моделей;

–Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;

–Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

–построить имитационную модель дольше, труднее и дороже;

–для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;

–взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;

–построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

1.2 Классификация моделей

1.2.1
Классификация с учетом фактора времени и области использования (Макарова Н.А.)

Статическая модель - это как бы одномоментный срез информации по объекту (результат одного обследования)
Динамическая модель-позволяет увидеть изменения объекта во времени(Карточка в поликлинике)
Можно классифицировать модели и по тому, к какой области знаний они принадлежат (биологические,исторические , экологические и т.п.)
Возврат в начало

1.2.2 Классификация по области использования (Макарова Н.А.)

Учебные- наглядные пособия, тренажеры,о бучающие программы
Опытные модели-уменьшенные копии (автомобиль в аэродинамической трубе)
Научно-технические- синхрофазотрон , стенд для проверки электронной аппаратуры
Игровые- экономические , спортивные, деловые игры
Имитационные- не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называется методом проб и ошибок
Возврат в начало

1.2.3 Классификация по способу представления Макарова Н.А.)

Материальные модели-иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение
Информационные модели-нельзя потрогать или увидеть. Они строятся только на информации.И нформационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Вербальная модель - информационная модель в мысленной или разговорной форме.
Знаковая модель-информационная модель выраженная знаками,т .е . средствами любого формального языка.
Компьютерная модель -м одель, реализованная средствами программной среды.

1.2.4 Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.))

"...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах , то потребуется один срок, другой-если ехать на автомобиле, третий - если лететь самолетом. А самое главное - для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем - можно воспользоваться расписанием самолетных рейсов.
Отличаются эти три модели - мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель) , во втором- как бы фотографией с натуры (натурная модель) , в третьем - таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно- в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна"
На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход - определения понятий четко выделены и несколько статичны.

1.2.5 Классификация моделей приведенная в пособии А.И.Бочкина

Способов классификации необычно много.П риведем лишь некоторые, наиболее известные основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно-знаковые модели, масштабные и немасштабные...
Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования.
Дискретность и непрерывностьДискретность - характерный признак именно компьютерных моделей.В едь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа.
Случайность и детерминированность . Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний).
Матричность - скалярность . Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной . Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, - матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны.
Статичность динамичность . Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом к динамической , либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель.
Аналитические модели . Описание процессов аналитически , формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов.
Имитационные модели . Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти.
Информационные модели . Информационные модели принято противополагать математическим , точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель, иначе - математичеескую .
Предметные модели . Это прежде всего детская модель - игрушка.
Образно-знаковые модели . Это прежде всего модель в уме человека: образная , если преобладают графические образы, и знаковая , если больше слов или (и) чисел. Образно-знаковые модели строятся на компьютере.
Масштабные модели . К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта).



Рассмотрим понятие: «Модели. Классификация моделей» с научной точки зрения.

Классификация

В настоящее время существует деление их на отдельные группы. В зависимости от целевого назначения подразумевается такая классификация экономико-математических моделей:

  • теоретико-аналитические виды, связанные с исследованиями общих характеристик и закономерностей;
  • прикладные модели, направленные на решение определенных экономических задач. К ним относят модели прогнозирования, экономического анализа, управления.

Классификация экономико-математических моделей связана и со сферой их практического применения.

В зависимости от содержательной проблематики, такие модели подразделяют на группы:

  • производственные модели в целом;
  • отдельные варианты для регионов, подсистем, отраслей;
  • комплексы моделей потребления, производства, распределения и формирования трудовых ресурсов, доходов, финансовых связей.

Классификация моделей данных групп подразумевает выделение структурных, подсистем.

При проведении исследований на хозяйственном уровне структурных моделей объясняется взаимосвязью отдельных подсистем. В качестве распространенных вариантов можно выделить модели межотраслевых систем.

Функциональные варианты используются для экономического регулирования товарно-денежных отношений. Можно один и тот же объект представить в виде функциональной, структурной форм одновременно.

Применение в исследованиях на хозяйственном уровне структурных моделей обосновано взаимосвязью подсистем. Типичными в данном случае являются модели межотраслевых связей.

Функциональные модели широко применяются в сфере экономического регулирования. Типичными в данном случае являются модели поведения потребителей в условиях товарно-денежных отношений.

Отличия между моделями

Проанализируем разные модели. Классификация моделей, используемых в настоящее время в экономике, предполагает выделение нормативных и дескриптивных вариантов. Используя дескриптивные модели можно объяснить анализируемые факты, прогнозировать возможность существования определенных фактов.

Цель дескриптивного похода

Она предполагает эмпирическое выявление разных зависимостей в современной экономике. Например, устанавливаются статистические закономерности различных социальных групп, изучаются вероятные пути развития определенных процессов при постоянных условиях либо без внешних воздействий. На основе результатов, полученных в ходе социологического опроса, можно выстроить модель покупательского спроса.

Нормативные модели

С их помощью можно предположить целенаправленную деятельность. В качестве примера можно представить модель оптимального планирования.

Может быть и нормативной, и дескриптивной. Если модель применяется при проведении анализа пропорций ушедшего периода, она дескриптивна. При расчете с ее помощью оптимальных путей развития экономики она является нормативной.

Признаки моделей

Классификация моделей предполагает учет отдельных функций, которые помогают уточнять спорные моменты. Максимальное распространение дескриптивный подход нашел в имитационном моделировании.

В зависимости от характера обнаружения причинно-следственных связей существует классификация моделей на варианты, включающие отдельные элементы неопределенности и случайности, а также жестко детерминистские модели. Важно отличать неопределенность, которая базируется на теории вероятности, и неопределенность, выходящую за границы действия закона.

Деление моделей по способам отражения временного фактора

Предполагается классификация моделей по данному фактору на динамические и статические виды. Статические модели предполагают рассмотрение всех закономерностей в определенный промежуток времени. Динамические варианты характеризуются изменениями во времени. В зависимости от продолжительности применения допускается классификация моделей на следующие варианты:

  • краткосрочные, длительность которых не превышает года;
  • среднесрочные, рассчитанные на срок от года до пяти лет;
  • долгосрочные, рассчитанные на срок более пяти лет.

В зависимости от специфики проекта, допускается внесение изменений в процессе использования модели.

По форме математических зависимостей

Основанием классификации моделей является форма математических зависимостей, выбранная для работы. В основном пользуются для проведения вычислений и анализа классом линейных моделей. Рассмотрим экономические виды моделей. Классификация моделей такого вида помогает изучать изменение потребления и спроса населения в случае роста их материальных доходов. Кроме того, с помощью анализируется изменения потребности населения в случае увеличения производства, оценивается эффективность применения ресурсов в конкретной ситуации.

В зависимости от соотношения эндогенных и экзогенных переменных, которые включаются в модель, применяется классификация моделей данных видов на закрытые и открытые системы.

Любая модель должна включать минимум одну эндогенную переменную, в связи с чем полностью открытые системы найти весьма проблематично. Модели, которые не включают экзогенных переменных (закрытые варианты) также практически не распространены. Для того чтобы создать подобный вариант, придется в полной мере абстрагироваться от среды, допустить серьезные огрубления реальной экономической системы, имеющей внешние связи.

По мере увеличения достижений математических и экономических исследований классификация моделей, систем, существенно усложняется. В настоящее время используются смешанные типы, а также сложные модельные конструкции. Единая классификация информационных моделей на данный момент не установлена. При этом можно отметить около десяти параметров, по которым происходит выстраивание типов моделей.

Типы моделей

Монографическая или словесная модель предполагает описание процесса или явления. Часто речь идет о правилах, законе, теореме либо совокупности нескольких параметров.

Графическая модель оформляется в виде чертежа, географической карты, рисунка. К примеру, взаимосвязь между потребительским спросом и стоимостью продукции можно представить с помощью координатных осей. График наглядно демонстрирует зависимость между двумя величинами.

Вещественные либо физические модели создают для объектов, которые пока в реальности не существуют.

Степень агрегирования объектов

Существует классификация информационных моделей по данному признаку на:

  • локальные, с помощью которых осуществляется анализ и прогноз определенных показателей развития отрасли;
  • на микроэкономические, предназначенные для серьезного анализа структуры производства;
  • макроэкономические, базирующиеся на изучении хозяйства.

Есть и отдельная классификация моделей управления для макроэкономических видов. Они подразделяются на одно-, двух-, многосекторные варианты.

В зависимости от цели создания и использования различают следующие варианты:

  • детерминированные, имеющие однозначно понятные результаты;
  • стохастические, которые предполагают вероятностные итоги.

В современной экономике выделяют балансовые модели, в которых отражается требование соответствия базы ресурсов и их применения. Для их записи используют форму квадратных шахматных матриц.

Есть и эконометрические виды, для оценивания которых применяются методы математической статистики. На подобных моделях выражают развитие главных показателей создаваемой экономической системы посредством длительной тенденции (тренда). Они востребованы в анализе и прогнозировании определенных экономических ситуаций, связанных с реальной статистической информацией.

Оптимизационные модели дают возможность из множества альтернативных (возможных) вариантов выбрать оптимальный вариант производства, потребления либо распределения ресурсов. Применение ограниченных ресурсов в такой ситуации будет самым эффективным средством для получения поставленной цели.

Предполагают участие в проекте не только эксперта, но и специализированного программного обеспечения, ЭВМ. Создаваемая в итоге экспертная база данных предназначается для решения путем имитации деятельности человека одной или нескольких задач.

Сетевые модели представляют собой комплекс операций и событий, взаимосвязанных во времени. Чаще всего такая модель предназначается для осуществления работ в такой последовательности, чтобы добиться минимальных сроков выполнения проекта.

В зависимости от выбранного типа математического аппарата выделяют модели:

  • матричные;
  • корреляционно-регрессивные;
  • сетевые;
  • управления запасами;
  • массового обслуживания.

Этапы экономико-математического моделирования

Данный процесс является целенаправленным, он подчиняется определенной логической программе действий. Среди основных этапов создания такой модели выделяют:

  • постановку экономической проблемы и проведение ее качественного анализа;
  • разработку математической модели;
  • подготовку исходной информации;
  • численное решение;
  • проведение анализа полученных результатов, их использование.

При постановке экономической проблемы, необходимо четко сформулировать суть проблемы, отметить важные черты и параметры моделируемого объекта, проанализировать взаимосвязь отдельных элементов, чтобы объяснить развитие и поведение рассматриваемого объекта.

При разработке математической модели выявляется зависимость между уравнениями, неравенствами, функциями. Прежде всего определяют тип модели, анализируют возможность применения ее в конкретной задаче, формируется конкретный перечень параметров и переменных. При рассмотрении сложных объектов выстраивают разноаспектные модели, чтобы каждая характеризовала отдельные стороны объекта.

Заключение

В настоящее время не существует отдельное понятие модели. Классификация моделей является условной, но это не снижает их актуальности.