Принцип работы калий натриевого насоса. Натрий - калиевый насос. Смотреть что такое "Натрий-калиевый насос" в других словарях

Это особый белок, пронизывающий всю толщу мембраны, который постоянно накачивает ионы калия внутрь клетки, одновременно выкачивая из нее ионы натрия; при этом перемещение обоих ионов происходит против градиентов их концентраций. Выполнение этих функций воз­можно благодаря двум важнейшим свойствам этого белка. Во-первых, форма молекулы переносчика может меняться. Эти из­менения происходят в результате присоединения к молекуле переносчика фосфатной группы за счет энергии, выделяющейся при гидролизе АТФ (т. е. разложения АТФ до АДФ и остатка фо­сфорной кислоты). Во-вторых, сам этот белок действует как АТФ-аза (т. е. фермент, гидролизующий АТФ). Поскольку этот белок осуществляет транспорт натрия и калия и, кроме того, об­ладает АТФ-азной активностью, он так и называется - «натрий-калиевая АТФ-аза».

Упрощенно действие натрий-калиевого насоса можно предста­вить следующим образом.

1. С внутренней стороны мембраны к молекуле белка-переносчика поступают АТФ и ионы натрия, а с наружной - ионы калия.

2. Молекула переносчика осуществляет гидролиз одной молеку­лы АТФ.

3. При участии трех ионов натрия за счет энергии АТФ к перено­счику присоединяется остаток фосфорной кислоты (фосфорилирование переносчика); сами эти три иона натрия также присое­диняются к переносчику.

4. В результате присоединения остатка фосфорной кислоты про­исходит такое изменение формы молекулы переносчика (конформация), что ионы натрия оказываются по другую сторону мембраны, уже вне клетки.

5. Три иона натрия выделяются во внешнюю среду, а вместо них с фосфорилированным переносчиком соединяются два иона калия.

6. Присоединение двух ионов калия вызывает дефосфорилирование переносчика - отдачу им остатка фосфорной кислоты.

7. Дефосфорилирование, в свою очередь, вызывает такую конформацию переносчика, что ионы калия оказываются по дру­гую сторону мембраны, внутри клетки.

8. Ионы калия высвобождаются внутри клетки, и весь процесс повторяется.

Значение натрий-калиевого насоса для жизни каждой клетки и организма в целом определяется тем, что непрерывное откачи­вание из клетки натрия и нагнетание в нее калия необходимо для осуществления многих жизненно важных процессов: осморегуляции и сохранения клеточного объема, поддержания раз­ности потенциалов по обе стороны мембраны, поддержания эле­ктрической активности в нервных и мышечных клетках, для активного транспорта через мембраны других веществ (сахаров, аминокислот). Большие количества калия требуются также для белкового синтеза, гликолиза, фотосинтеза и других процессов. Примерно треть всей АТФ, расходуемой животной клеткой в со­стоянии покоя, затрачивается именно на поддержание работы натрий-калиевого насоса. Если каким-либо внешним воздейст­вием подавить дыхание клетки, т. е. прекратить поступление кислорода и выработку АТФ, то ионный состав внутреннего со­держимого клетки начнет постепенно меняться. В конце концов он придет в равновесие с ионным составом среды, окружающей клетку; в этом случае наступает смерть.








Активный транспорт - это сопряженный с потреблением энергии перенос молекул или ионов через мембрану против градиента концентрации. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении. Движение это обычно однонаправленное, тогда как диффузия обратима. Источником энергии для активного транспорта служит АТФ - соединение, образующееся в процессе дыхания и выполняющее в клетке роль носителя энергии. Поэтому в отсутствие дыхания активный транспорт идти не может.

Во внеклеточных и внутриклеточных жидкостях преобладают ионы натрия (Na=), ионы калия (К+) и хлорид-ионы (Сl-). На рисунке видно, что концентрации этих ионов внутри эритроцитов и в плазме крови человека весьма различны. Внутри эритроцитов, как и в большинстве клеток, концентрация калия значительно выше, чем снаружи. Другая характерная особенность заключается в том, что внутриклеточная концентрация калия превышает концентрацию натрия.

Если каким-либо специфическим воздействием, например с помощью цианида, подавить дыхание эритроцитов, то их ионный состав начнет постепенно меняться и в конце концов сравняется с ионным составом плазмы крови. Это показывает, что данные ионы могут пассивно диффундировать через плазматическую мембрану эритроцитов, но что в норме за счет энергии, поставляемой процессом дыхания, идет их активный транспорт, благодаря которому и поддерживаются концентрации, указанные на рисунке. Иными словами, натрий активно выкачивается из клетки, а калий активно накачивается в нее.

Натрий-калиевый насос

Активный транспорт осуществляется при помощи белков-переносчиков, локализующихся в плазматической мембране. Этим белкам в отличие от тех, о которых мы говорили при обсуждении облегченной диффузии, для изменения их конформации требуется энергия. Поставляет эту энергию АТФ, образующийся в процессе дыхания.

Сравнительно недавно выяснилось, что у большей части клеток в плазматической мембране действует натриевый насос , активно выкачивающий натрий из клетки. В животных клетках натриевый насос сопряжен с калиевым насосом, активно поглошаюшим ионы калия из внешней среды и переносящим их в клетку. Такой объединенный насос называют натрий-калиевым насосом |(Na+, К+)-насос|. Поскольку насос имеется почти во всех животных клетках и выполняет в них ряд важных функций, он представляет собой хороший пример механизма активного транспорта. О его физиологическом значении свидетельствует тот факт, что более трети АТФ, потребляемого животной клеткой в состоянии покоя, расходуется на перекачивание натрия и калия.

Насос - это особый белок-переносчик, локализующийся в мембране таким образом, что он пронизывает всю ее толщу. С внутренней стороны мембраны к нему поступают натрий и АТФ, а с наружной - калий. Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает этот белок. Обратите внимание, что на каждые два поглощенных иона калия из клетки выводится три иона натрия. Вследствие этого содержимое клетки становится более отрицательным по отношению к внешней среде, и между двумя сторонами мембран возникает разность потенциалов. Это ограничивает поступление в клетку отрицательно заряженных ионов (анионов), например хлорид-ионов. Именно данным обстоятельством объясняется тот факт, что концентрация хлорид-ионов в эритроцитах ниже, чем в плазме крови (рис. 5.20), хотя эти ионы могут поступать в клетки и выходить из них за счет облегченной диффузии. Положительно заряженные ионы (катионы), напротив, притягиваются клеткой. Таким образом, оба фактора - концентрация и электрический заряд - важны при определении того, в каком направлении будут перемешаться через мембрану ионы.

Натрий-калиевый насос необходим животным клеткам для поддержания осмотического баланса (осморегуляции). Если он перестанет работать, клетка начнет набухать и в конце концов лопнет. Произойдет это потому, что с накоплением ионов натрия в клетку под действием осмотических сил будет поступать все больше и больше воды. Ясно, что бактериям, грибам и растениям с их жесткими клеточными стенками такой насос не требуется. Животным клеткам он нужен также для поддержания электрической активности в нервных и мышечных клетках и, наконец, для активного транспорта некоторых веществ, например Сахаров и аминокислот. Высокие концентрации калия требуются также для белкового синтеза, гликолиза, фотосинтеза и для некоторых других жизненно важных процессов.

Активный транспорт осуществляется всеми клетками, но в некоторых случаях он играет особо важную роль. Именно так обстоит дело в клетках эпителия, выстилающего кишечник и почечные канальцы, поскольку функции этих клеток связаны с секрецией и всасыванием.

Натрий-калиевый насос (или натрий-калиевая помпа) - наверное, один из самых изученных белков, однако он продолжает преподносить сюрпризы. Недавно группа датских исследователей предложила модель работы этого белка, в которой важную роль играют цитоплазматические протоны. Судя по всему, некоторые наследственные неврологические нарушения, например один из видов гемиплегической мигрени , вызываются мутацией именно в том участке насоса, где связывается протон.

Жизнь зарождалась в соленой морской воде, и первым клеткам - крохотным мешочкам с пресным содержимым - приходилось постоянно «выплевывать» проникающие в них ионы натрия, чтобы не «засолиться». Поэтому в мембране клеток появился специальный белок - натрий-калиевый насос. Этот трансмембранный (то есть пронизывающий мембрану насквозь) белок занимается тем, что выкачивает из клетки ионы натрия и взамен впускает ионы калия: на каждые три «выплюнутых» натриевых иона приходится два «проглоченных» калиевых и расщепляется одна молекула АТФ. Клетка научилась использовать возникающие в результате этого химические и электрические градиенты себе на благо: например, для создания потенциала покоя , симпорта и поддержания клеточного объема.

Тот факт, что в обмен на три иона натрия в клетку попадает только два иона калия, немного настораживает. Если в насосе есть три участка для связывания катионов, то куда же девается один из них, когда белок транспортирует калий? Группа ученых из Дании (датчане вообще славятся работами в биологии ионных насосов, взять хотя бы первооткрывателя натриевого насоса Йенса Кристиана Скоу) попыталась доказать, что место третьего натриевого иона во время переноса калия занимает цитоплазматический протон (то есть ион водорода), который потом, когда становится ненужным, возвращается назад в цитоплазму. Кроме того, исследователи предполагают, что обнаружили в натриевом насосе прежде неисследованный ионный ход, по которому и движется этот протон.

Всё началось с того, что при изучении альфа-субъединицы этого белка ученые обратили внимание на то, что между его C-концом и предполагаемым сайтом связывания для третьего иона натрия находится полость, выстланная полярными и заряженными аминокислотными остатками - то есть идеальная дорога для ионов. Особенно интересно, что тяжелое наследственное заболевание - гемиплегическая мигрень - вызывается мутацией в аминокислотах, находящихся совсем рядом с этой полостью.

Чтобы узнать, для чего эта полость нужна, ученые попробовали «испортить» ее (заменив некоторые из образующих ее аминокислот на другие) и посмотреть, какие проблемы возникнут у мутантного белка. Во-первых, выяснилось, что мутантный насос значительно утратил сродство к натрию. Но кроме того оказалось, что в определенных условиях (при повышенном мембранном потенциале) она «выплевывала» натрий гораздо охотнее, чем немутантный белок. Это могло означать, что мутация в данном участке насоса облегчает какой-то процесс, связанный с высвобождением натрия.

Исследователи провели еще ряд экспериментов и пришли к выводу, что этот загадочный процесс - высвобождение C-конца: он, как пробка, отходит от основной части белка, открывает ионный канал и впускает туда молекулы воды, которые протонируют находящийся в глубине остаток аспартата (D930). После этого натрий покидает насос и попадает во внеклеточное пространство. Всё это позволило ученым создать усовершенствованную модель работы натриевого насоса.

Судя по всему, он работает так. Пусть вначале в насосе «сидят» три иона натрия на своих сайтах связывания и один протон на глутаматном остатке. Ионы натрия могут выйти во внеклеточное пространство только тогда, когда C-конец белка поменяет свое положение и перестанет затыкать ионный канал и по этому каналу пойдет вода, которая протонирует остаток аспартата (где находится сайт связывания для натрия). Когда ионы натрия выходят во внеклеточное пространство, им на смену приходят ионы калия. Тот протон, который был на глутамате, переходит на аспартат, а тот, что был на аспартате, покидает белок по открытому ионному каналу. Ионы калия входят во внутриклеточное пространство по одному каналу, а протон, который был на аспартате, - по другому. На смену ионам калия приходят ионы натрия. На глутаматный остаток «садится» протон, и цикл повторяется.

Однако пассивные механизмы не позволяют понять причины сохранения ионной асимметрии на протяжении всей жизни клетки, кроме того, было замечено, что многие вещества проходят через мембрану против градиента концентрации. Естественно, что этот процесс протекает с затратой энергии. Поэтому, такой механизм переноса называется активным. Активный перенос всегда является избирательным. Он был обнаружен в 1955 году Ходжкиным и названкалий-натриевый насос.

Он обеспечивает "откачивание" ионов натрия из клетки и транспорт ионов калия внутрь ее. Осуществляется это с помощью белка-переносчика. Он захватывает в цитоплазме клетки 3 иона натрия и переносят их наружу, где ионы отщепляются и таким образом выводятся из клетки. На наружной поверхности к переносчику присоединяются 2 иона калия, которые закачиваются внутрь клетки.

Работа эта осуществляется с затратой энергии, источником которой является аденозинтрифосфат (АТФ). Распад АТФ происходит под действием фермента АТФ-азы, при этом выделяется энергия, которая используется в работе калий-натриевого насоса. При сдвигах трансмембранной концентрации ионов, активность К-Na-насоса может автоматически регулироваться. В регуляции особое значение имеет аденозинтрифосфатаза, которая активируется при увеличении концентрации натрия в цитоплазме и калия в межклеточной жидкости.

Работа насоса приводит к следующим результатам:

1) поддерживает высокую концентрацию ионов К + внутри клетки, обеспечивая тем самым постоянство величины потенциала покоя,

2) поддерживает низкую концентрацию ионов натрия внутри клетки,

3) поддерживая концентрационный градиент натрия, натрий-калиевый насос способствует сопряженному транспорту аминокислот и глюкозы через клеточную мембрану.

Таким образом ионная асимметрия обусловлена как избирательной проницаемостью мембраны в состоянии покоя, так и деятельностью К-Na-насоса. Эту величину можно рассчитать по формуле Гольдмана:

RTP K [K] B н +P N а B н +P Cl H

Е м = ______ ln ________________________________________________ , где

NFP K [K] B н +P N а B н +P Cl H

P K , P N а, P Cl – проницаемость для ионов К,Nа,Cl,

вн, н – их внутренняя и наружная концентрация.

Изменение мембранного потенциала. Потенциал действия или токи действия

Биотоки наблюдаются не только при покое, но и при возбуждении тканей. Электрические процессы всегда сопровождают возбуждение и являются лучшим его критерием.

Впервые наличие биотоков при возбуждении было обнаружено Маттеучи в 1837 году в следующем опыте. Он брал 2 н.-м. препарата и нерв одного из них накладывал на мышцу другого, нерв которого раздражался электрическим током. при включении Эл. тока сокращалась не только раздражаемая мышца, но и другая. Этот факт объясняется тем, что при сокращении первой мышцы в ней возникают биотоки, сила которых достаточна для того, чтобы возбудить лежащий на ней нерв второго препарата и вызвать сокращение иннервируемой мышцы.

В 1954 году Мюллер и Кёлликер установили, что электрические явления сопровождают и деятельность сердца. Они накладывали на сокращающееся сердце теплокровного животного нерв н.-м. препарата икроножной мышцы лягушки и наблюдали, что при каждом сокращении сердца одновременно сокращается и мышца. Биотоки сердца возбуждают нерв, а он – мышцу.

В дальнейшем биотоки были обнаружены во всех возбудимых тканях при их деятельности. В 1800 году Герман назвал токи, сопровождающие процесс возбуждения, потенциалами или токами действия. Этот термин применяется и в наши дни, а токи действия считаются лучшим показателем возбуждения тканей.

Токи действия можно зарегистрировать.

Это делают микроэлектродным способом. Один электрод располагают на поверхности, а микроэлектрод вводят в клетку. При этом регистрация идет на фоне токов покоя или мембранного потенциала. Сразу после введения электрода внутрь клетки осциллограф регистрирует наличие потенциала покоя, который равен – 70 мв. Если после этого раздражать клетку надпороговым раздражителем, действующим рядом с внеклеточным электродом, то клетка возбуждается и осциллограф записывает кривую однофазного тока действия, которая отражает быстрое колебание мембранного потенциала. В момент возбуждения кривая круто поднимается вверх, доходит до 0 и затем превышает его. После этого возбуждение покидает точку воздействия и заряд мембраны восстанавливается до -70мв.

При этом регистрируется однофазный потенциал действия (рис.8). В кривой однофазного тока действия выделяют несколько частей. Восходящую часть кривой называютфазой деполяризации , поскольку она отражает процесс уменьшения и исчезновения исходной поляризации мембраны. Эта фаза протекает наиболее быстро. Вершину тока действия называютспайком. Нисходящее колено характеризует восстановление исходной поляризации мембраны и называютфазой реполяризации . В этой фазе различают 2 части –быстрой реполяризации с крутым падением кривой имедленной, когда восстановление мембранного потенциала замедляется, Эту часть нередко называютследовым отрицательным потенциалом . После него в некоторых тканях (безмякотных нервах) наблюдаетсяследовой положительный потенциал , увеличение заряда мембраны, еегиперполяризация.

Ионный механизм потенциала действия впервые попытался объяснить Ю. Берншетейн в 1912 году с позиции «теории прорыва ионного барьера». Согласно этой гипотезе, при действии раздражителя мембрана теряет свою избирательность и все ионы получают возможность двигаться по своим концентрационным градиентам: Na– в клетку, К – на поверхность. Их концентрация над и под мембраной выравнивается и мембранный потенциал в возбужденном участке исчезает. Это длиться очень короткое время, после чего мембранный потенциал полностью восстанавливается. По Бернштейну амплитуда токов действия равна величине мембранного потенциала.

Эта теория была распространена до микроэлектродных исследований Ходжкина и Катца (1949). В своих опытах на гигантских нервных волокнах кальмара ими было установлено, что токи действия имеют большую величину, чем токи покоя: МП при возбуждении не просто падает до 0, а изменяется на противоположный - наружная поверхность заряжается отрицательно по отношению к внутренней.

Ходжкиным, Хаксли, Катц (1952) впервые выдвинули теорию об индивидуальном участии различных ионов в формировании потенциала действия (рис.9).

Согласно этой теории потенциал действия имеет несколько фаз:

1) фаза градуальной деполяризации – это время от момента нанесения раздражителя до достижения уровня критической деполяризации, после чего развивается высокоамплитудная часть потенциала действия. Градуальная деполяризация характеризуется постепенным раскрытием натриевых каналов, медленным вхождением ионов натрия в клетку по концентрационному градиенту и постепенным снижением МП. Длительность первой фазы для нервной ткани - 0,00004 сек, для скелетной мышцы – 0,0001 сек. При снижении мембранного потенциала до Е кр, происходит открытие всех натриевых каналов и развивается следующая фаза.

2) фаза быстрой деполяризации - это время развития пика от начала его возникновения до вершины. Открываются все натриевые каналы, и ионы натрия лавинообразно поступают внутрь клетки по концентрационному и электрохимическому градиенту. В эту фазу смещение мембранного потенциала протекает стремительно, он снижается и приобретает положительный заряд, достигающий величины +30-+40 мВ. Это называетсяпиком деполяризации илиспайком. Амплитуда потенциала действия равна 100-120 мВ.

Длительность этой фазы для нерва равна приблизительно 0,001-0,002 сек, для мышцы – приблизительно 0,005 сек.

3) фаза реполяризации – определяется временем снижения мембранной поляризации до исходного уровня. Начинается в момент достижения заряда мембраны +30-+40мВ. В этот момент инактивируются натриевые каналы и активируются калиевые каналы. Проницаемость для ионов калия увеличивается и он начинает выходить из клетки. Этот период имеет два отрезка времени – относительно быстрое снижение поляризации мембраны(быстрой реполяризации) , и последующее более медленное снижение поляризации клетки (медленная реполяризация) , которое называетсяотрицательный следовой потенциал. Медленное снижение мембранной поляризации обусловлено включением в работу активных механизмов переноса ионов натрия и калия (калий-натриевый насос). Длительность третьей фазы для нерва равна 0,02-0,03 сек, для мышцы - приблизительно 0,05-0,1 сек.

4) фаза гиперполяризации (положительный следовой потенциал) – снижение поляризации клеточной мембраны ниже исходной величины. Гиперполяризация характерна для немиелинизированных нервных волокон. Ее связывают с временно увеличенной проницаемостью для ионов К + . Длительность следовой электроположительности для нерва приблизительно равна 0,1 сек, для мышцы – 0,25 сек и больше.

После гиперполяризации МП полностью нормализуется до исходных -70мВ. Подобные ПД наблюдаются в любой возбудимой системе, протекая с различной скоростью и занимая различное время. ПД развивается по закону «все или ничего».

Токи действия служат одним из самых объективных критериев возбуждения, поэтому их регистрация используется для оценки работы многих органов: ЭКГ, ЭЭГ, электромиография и т.д. Токи действия нашли практическое применение в протезировании – в создании управляемых протезов.

Лекция № 14

Термин «биологические насосы» закрепился в литературе с XIX в. Он появился еще до возникновения взгляда на биомембрану как важнейший функциональный компонент клетки. Вначале под биологическими насосами понимали какие-то неизвестные механизмы, которые обеспечивают массоперенос в организме вопреки элементарным законам физики и химии.

В середине XIX в. после блистательных успехов физико-химического изучения жизнедеятельности появились факты, свидетельствующие о том, что всасывание веществ в пищеварительном тракте, мочеобразование и лимфоотделение только отчасти сводятся к процессам фильтрации и диффузии.

Позднее ученые разобрались во многих недоразумениях примитивного приложения законов физики и химии к объяснению явлений жизни. Однако термин «биологические насосы» продолжает жить в биологии. В последние годы с ними зачастую отождествляют ионные насосы − системы активного транспорта Na + , К + , Са 2+ , Н + (натрий-калиевую, кальциевую, протонную помпы).

Активный транспорт. Активным транспортом называют трансмембранный перенос веществ в направлении, противоположном транспорту, который должен был бы происходить под действием физико-химических градиентов (прежде всего концентрационного и электрического). Он направлен в сторону более высокого электрохимического потенциала и необходим как для накопления в клетках (или определенных органоидах) веществ, в которых они нуждаются, даже из среды с их низкой концентрацией, так и для выведения из клеток (органоидов) тех агентов, содержание которых там должно поддерживаться на низком уровне, даже при повышении его в окружающей среде.

Свойства систем активного транспорта. Из определения активного транспорта следует, что его важнейшим свойством является перенос веществ вопреки действию физико-химических градиентов (вопреки электродиффузионному уравнению Нернста−Планка), т. е. в сторону более высокого электрохимического потенциала благодаря термодинамическому сопряжению концентрационного и электрического градиентов с расходованием свободной энергии организма. Поэтому система уравнений переноса выглядит так:

Химический потенциал (μ х) количественно характеризует вклад ферментативных реакций в свободную энергию биомембраны, необходимую для преодоления сопряженного действия концентрационного и электрического градиентов. Если изменения свободной энергии клетки, обеспечивающие активный транспорт через мембрану, обусловлены макроэргами (АТФ), то в этих уравнениях: v − число молей АТФ, затраченных на массоперенос, а μ х равен приросту свободной энергии клетки при гидролизе 1 моля АТФ (в стандартных условиях это составляет 31,4 кДж · моль -1).


Сказанное позволяет сформулировать второе характерное свойство систем активного транспорта − необходимость энергетического обеспечения за счет свободной энергии, выделяющейся либо непосредственно в ходе окислительно-восстановительных реакций (речь идет о так называемой редокс-помпе), либо при гидролизе макроэргов, синтезированных впрок при тех же реакциях. Необходимо подчеркнуть, что свободная энергия, обеспечивающая активный транспорт, черпается биомембранами в ходе химических процессов, связанных непосредственно с переносом веществ через них, т. е. из химических реакций, в которых участвуют сами мембранные компоненты систем активного транспорта. В этом состоит коренное отличие активного транспорта от других способов транспорта веществ через БМ, также нуждающихся в затратах свободной энергии.

Свободная энергия (∆G ), затрачиваемая на трансмембранный перенос одного моля вещества в направлении более высокого электрохимического потенциала,

рассчитывается по формуле:

У человека в покое примерно 30-40% всей энергии, образующейся в ходе метаболических процессов, расходуется на активный транспорт. В некоторых случаях на его обеспечение может затрачиваться почти вся свободная энергия, вырабатываемая клеткой. Ткани, в которых активный транспорт особенно интенсивен, потребляют много кислорода даже в покое. Например, масса мозга человека составляет только 1 / 50 массы тела, но в условиях мышечного покоя ткани мозга поглощают около 1 / 5 всего кислорода, усвоенного организмом. Общая мощность всех ионных насосов человеческого мозга − примерно 1 Вт. Почки при угнетении в них активного транспорта ионов снижают свою потребность в кислороде на 70−80%.

Третье свойство систем активного транспорта заключается в их специфичности: каждая из них обеспечивает перенос через БМ только данного вещества (или группы их) и не переносит другие. Правда, активный транспорт ионов натрия бывает сопряжен с пассивным переносом в том же направлении других веществ (например, глюкозы, некоторых аминокислот и т. д.). Это явление называют симпортом. Некоторые системы активного транспорта переносят одно вещество в данном направлении, а другое − в противоположном. Так, калий-натриевая помпа закачивает калий из межклеточной среды в цитоплазму и откачивает натрий из клетки. Такой вид транспорта называют антипортом.

Когда эти ионы начинают перемещаться через БМ в направлении более низкого электрохимического потенциала, то натрий-калиевая помпа становится генератором АТФ. Это явление получило название эффекта обращения систем активного транспорта: на перекачивание ионов в сторону более высокого электрохимического потенциала насосы затрачивают свободную энергию, гидролизуя АТФ, тогда как при движении ионов в противоположном направлении они преобразуют энергию градиентов в энергию макроэргической связи АТФ, синтезируя его из АДФ. Специфичность систем активного транспорта служит одним из самых действенных механизмов селективной проницаемости клеточных мембран и придания им векторных свойств.

Компоненты систем активного транспорта. В составе любой системы активного транспорта веществ через БМ можно выделить три основных компонента: источник свободной энергии, переносчик данного вещества, сопрягающий (регуляторный) фактор. Последний сопрягает работу переносчика с источником энергии. Все компоненты систем активного транспорта образуют сложный молекулярный комплекс в клеточной мембране.

В большинстве известных систем активного транспорта непосредственным источником свободной энергии служит АТФ. За счет присоединения его концевой фосфатной группы, предварительно оторванной при гидролизе, к мембранному переносчику последний фосфорилируется и приобретает дополнительную энергию, достаточную для преодоления физико-химических градиентов, препятствующих движению переносимого вещества. Следовательно, фосфорилированный комплекс переносчика с транспортируемым веществом способен преодолеть потенциальный барьер, неприступный для него до фосфорилирования. Отдавая перенесенное вещество на противоположной стороне БМ, молекулы переносчика дефосфорилируются и теряют энергию.

Реже свободная энергия черпается системами активного транспорта непосредственно из окислительно-восстановительных реакций, т. е. из цепи переноса электронов. Систему активного транспорта с таким источником энергии называют редокс-помпой. Примером может служить перенос Н + -ионов через внутреннюю мембрану митохондрии, обеспечивающий создание протондвижущей силы, при клеточном дыхании.

О переносчиках, обеспечивающих активный транспорт, известно пока немногое. По-видимому, в разных системах активного транспорта работа переносчиков осуществляется посредством различных механизмов. Во-первых, переносчиками могут быть сравнительно мелкие белковые молекулы, присутствующие в БМ. В этом случае молекула переносчика, приняв транспортируемое вещество, проходит всю толщу биомембраны, работая по типу малой или большой карусели. Во-вторых, переносчиками могут служить крупные молекулы мембранных белков, насквозь пронизывающие фосфолипидный бислой. Им, вероятно, свойственны такие механизмы, как ротация или сдвиг.

Третий компонент системы активного транспорта обеспечивает сопряжение работы переносчика с источником энергии. Такое сопряжение может заключаться в переносе фосфатной группы с АТФ на переносчик. Чтобы фосфорилировать переносчик, нужно прежде гидролизовать АТФ. Гидролиз АТФ достаточно эффективен только в присутствии специальных ферментов, называемых АТФазами. Они-то и служат фактором, сопрягающим работу переносчика с источником энергии в основных системах активного транспорта (натрий-калиевой и кальциевой помпах). Название этой ферментной системы употреблено во множественном числе не случайно. Для активного транспорта каждого вещества в тех случаях, когда источником энергии является АТФ, обнаружена специфическая АТФаза. Каждая из транспортных АТФаз активируется именно тем веществом, чей активный транспорт она обеспечивает. Например, Са-активируемая АТФаза переходит в активное состояние только тогда, когда концентрация Са 2+ в примембранном пространстве достигает определенного уровня, при котором необходим активный транспорт этого иона.

Все транспортные АТФазы связаны с клеточными мембранами и проявляют высокую специфичность, катализируя реакции, течение которых строго зависит от направления подхода к БМ транспортируемых веществ. Так, Na-K-активируемая АТФаза приобретает активность при взаимодействии с нею натрия внутри клетки, а калия − снаружи. Она не активируется при самых значительных концентрациях натрия в межклеточной среде и калия − в цитозоле.

Зависимость потока (Ф ) переносимого вещества через клеточную мембрану от его концентраций по обе ее стороны (Сi и С е) при участии транспортной АТФазы описывается уравнением.