Зачем мне нужна биология. Зачем нужна биология современному человеку? Значимость науки. Где и зачем нужна биология

Биология многим кажется второстепенным предметом, но это не так. Основы биологии важны для каждого человека. Уроки биологии воспитывают положительное и бережное отношение к живой природе, к своему здоровью и здоровью других людей. Эти уроки существенно расширяют кругозор, а также интеллектуальные и творческие способности. Кроме того, дети учатся применять полученные знания в повседневной жизни, ухаживать за животными. Изучая биологию, дети учатся понимать, как устроен мир, его законы и взаимосвязи.

Биология в нашей жизни

Наверное, каждый человек когда-нибудь слышал в своей жизни: «У него мамины глаза», «У тебя папин подбородок», «У нее бабушкины брови», «Ты вылитый прадедушка!». Но это совсем не значит, что кто-то отобрал у мамы глаза, у папы подбородок, у бабушки брови, а затем создал из этих частей нового человека. Это значит, что человек унаследовал от своих родителей, бабушек, дедушек и других предков какие-то характерные черты. Вопросами наследования занимается наука генетика .

Для человечества давно было очевидным, что многие люди похожи на своих предков, у определенных сортов растений есть преимущества перед другими сортами, а некоторые виды животных имеют характерные только для них признаки. Одни сорта яблок слаще, другие дольше хранятся. Одни породы лошадей быстрее бегают, другие крупнее и хорошо возят тяжелую поклажу. Тем не менее, достаточно молодая наука, а сам термин появился только в 1905 году. В XIX веке Грегор Мендель в результате долгих исследований вывел законы наследования признаков при скрещивании особей. Изучение строения клетки имело огромное значение для многих наук, в том числе и для генетики. Так, Август Вейсман установил, что хранение и передача наследственных признаков в клетке осуществляется через клеточное ядро.

Изучать биологию интересно

Сейчас почувствовать себя первооткрывателем и посмотреть на строение клетки организмов может любой ученик — для этого нужен лишь простой микроскоп. И если его нет у вас дома, то наверняка есть в школе. На уроках биологии можно рассмотреть под микроскопом кожуру лука или другого растения, сравнить особенности строения клеток у разных видов.

На уроках биологии каждый ученик также может почувствовать себя начинающим генетиком, разбирая задачи о наследовании признаков. Будет интересно решить такую задачу и о себе, вычисляя, почему именно вы имеете такой цвет глаз или волос. Кроме того, достаточно любопытно изучать строение тела человека и его скелет , который является основой опорно-двигательной системы. В большинстве школ есть модель скелета человека, которую можно внимательно рассмотреть и пощупать все кости. Этих костей в организме человека более двухсот, и каждая из них имеет свою функцию. Они защищают внутренние органы, служат опорой, формируют костный каркас тела.

Движение в принципе очень важно для человека, оно укрепляет и поддерживает его здоровье. Недаром говорят, что жизнь есть движение. играет в этом не последнюю роль.

Что нам дает биология?

На уроках биологии дети изучают различные темы, которые позволяют им лучше узнать окружающий мир и себя самих, понять, как живые существа взаимодействуют друг с другом и как работают внутренние органы человека. На лабораторных занятиях школьники могут изучить темы уроков более глубоко, работая со специальными материалами.

Портал сайт является хорошим подспорьем в изучении . Здесь всегда можно изучить наиболее сложные темы, а также любой пропущенный материал.

Всё, что нужно знать об ОГЭ по биологии в 2019 году, можно почитать - как готовиться, на что обращать внимание, почему могут снять баллы, что советуют участники ОГЭ прошлого года.

Подпишись на нас в Вконтакте и будь в курсе последних новостей!

Биология (от греч. биос - жизнь, логос - слово, наука) - это комплекс наук о живой природе.

Предметом биологии являются все проявления жизни: строение и функции живых существ, их разнообразие, происхождение и развитие, а также взаимодействие с окружающей средой. Основная задача биологии как науки состоит в истолковании всех явлений живой природы на научной основе, учитывая при этом, что целостному организму присущи свойства, в корне отличающиеся от его составляющих.

Термин «биология» встречается в трудах немецких анатомов Т. Роозе (1779) и К. Ф. Бурдаха (1800), однако только в 1802 году он был впервые употреблен независимо друг от друга Ж. Б. Ламар ком и Г. Р. Тревиранусом для обозначения науки, изучающей живые организмы.

Биологические науки

В настоящее время в состав биологии включают целый ряд наук, которые можно систематизировать по таким критериям: по предмету и преобладающим методам исследования и по изучаемому уровню организации живой природы. По предмету исследования биологические науки делят на бактериологию, ботанику, вирусологию, зоологию, микологию.

Ботаника - это биологическая наука, комплексно изучающая растения и растительный покров Земли. Зоология - раздел биологии, наука о многообразии, строении, жизнедеятельности, распространении и взаимосвязи животных со средой обитания, их происхождении и развитии. Бактериология - биологическая наука, изучающая строение и жизнедеятельность бактерий, а также их роль в природе. Вирусология - биологическая наука, изучающая вирусы. Основным объектом микологии являются грибы, их строение и особенности жизнедеятельности. Лихенология - биологическая наука, изучающая лишайники. Бактериология, вирусология и некоторые аспекты микологии часто рассматриваются в составе микробиологии - раздела биологии, науке о микроорганизмах (бактериях, вирусах и микроскопических грибах). Систематика, или таксономия , - биологическая наука, которая описывает и классифицирует по группам все живые и вымершие существа.

В свою очередь, каждая из перечисленных биологических наук подразделяется на биохимию, морфологию, анатомию, физиологию, эмбриологию, генетику и систематику (растений, животных или микроорганизмов). Биохимия - это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Морфология - биологическая наука, изучающая форму и строение организмов, а также закономерности их развития. В широком смысле она включает в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию животных и растений. Анатомия - это раздел биологии (точнее - морфологии), наука, изучающая внутреннее строение и форму отдельных органов, систем и организма в целом. Анатомия растений рассматривается в составе ботаники, анатомия животных - в составе зоологии, а анатомия человека является отдельной наукой. Физиология - биологическая наука, изучающая процессы жизнедеятельности растительных и животных организмов, их отдельных систем, органов, тканей и клеток. Существуют физиология растений, животных и человека. Эмбриология (биология развития) - раздел биологии, наука об инди видуальном развитии организма, в том числе развитии зародыша.

Объектом генетики являются закономерности наследственности и изменчивости. В настоящее время это одна из наиболее динамично развивающихся биологических наук.

По изучаемому уровню организации живой природы выделяют молекулярную биологию, цитологию, гистологию, органологию, биологию организмов и надорганизменных систем. Молекулярная биология является одним из наиболее молодых разделов биологии, наука, изучающая, в частности, организацию наследственной информации и биосинтез белка. Цитология, или клеточная биология , - биологическая наука, объектом изучения которой являются клетки как одноклеточных, так и многоклеточных организмов. Гистология - биологическая наука, раздел морфологии, объектом которой является строение тканей растений и животных. К сфере органологии относят морфологию, анатомию и физиологию различных органов и их систем.

Биология организмов включает все науки, предметом которых являются живые организмы, например, этологию - науку о поведении организмов.

Биология надорганизменных систем подразделяется на биогеографию и экологию. Распространение живых организмов изучает биогеография , тогда как экология - организацию и функционирование надорганизменных систем различных уровней: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы.

По преобладающим методам исследования можно выделить описательную (например, морфологию), экспериментальную (например, физиологию) и теоретическую биологию.

Выявление и объяснение закономерностей строения, функционирования и развития живой природы на различных уровнях ее организации является задачей общей биологии . К ней относят биохимию, молекулярную биологию, цитологию, эмбриологию, генетику, экологию, эволюционное учение и антропологию. Эволюционное учение изучает причины, движущие силы, механизмы и общие закономерности эволюции живых организмов. Одним из его разделов является палеонтология - наука, предметом которой являются ископаемые останки живых организмов. Антропология - раздел общей биологии, наука о происхождении и развитии человека как биологического вида, а также разнообразии популяций современного человека и закономерностях их взаимодействия.

Прикладные аспекты биологии отнесены к сфере биотехнологии, селекции и других быстроразвивающихся наук. Биотехнологией называют биологическую науку, изучающую использование живых организмов и биологических процессов в производстве. Она широко применяется в пищевой (хлебопечение, сыроделие, пивоварение и др.) и фармацевтической промышленностях (получение антибиотиков, витаминов), для очистки вод и т. п. Селекция - наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами. Под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей.

Прогресс биологии тесно связан с успехами других естественных и точных наук, таких как физика, химия, математика, информатика и др. Например, микроскопирование, ультразвуковые исследования (УЗИ), томография и другие методы биологии основываются на физических закономерностях, а изучение структуры биологических молекул и процессов, происходящих в живых системах, было бы невозможным без применения химических и физических методов. Применение математических методов позволяет, с одной стороны, выявить наличие закономерной связи между объектами или явлениями, подтвердить достоверность полученных результатов, а с другой - смоделировать явление или процесс. В последнее время все большее значение в биологии приобретают компьютерные методы, например моделирование. На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др.

Достижения биологии

Наиболее важными событиями в области биологии, повлиявшими на весь ход ее дальнейшего развития, являются: установление молекулярной структуры ДНК и ее роли в передаче информации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс); расшифровка генетического кода (Р. Холли, Х. Г. Корана, М. Ниренберг); открытие структуры гена и генетической регуляции синтеза белков (А. М. Львов, Ф. Жакоб, Ж. Л. Моно и др.); формулировка клеточной теории (М. Шлейден, Т. Шванн, Р. Вирхов, К. Бэр); исследование закономерностей наследственности и изменчивости (Г. Мендель, Х. де Фриз, Т. Морган и др.); формулировка принципов современной систематики (К. Линней), эволюционной теории (Ч. Дарвин) и учения о биосфере (В. И. Вернадский).

Значимость открытий последних десятилетий еще предстоит оценить, однако наиболее крупными достижениями биологии были признаны: расшифровка генома человека и других организмов, определение механизмов контроля потока генетической информации в клетке и формирующемся организме, механизмов регуляции деления и гибели клеток, клонирование млекопитающих, а также открытие возбудителей «коровьего бешенства» (прионов).

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, привели нас к пониманию того, что у человека имеется около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество участков и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также геновмишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы значительного количества людей, и тогда станет понятно, в чем же все-таки их различие. Эти цели поставлены перед целым рядом ведущих лабораторий всего мира, работающих над реализацией программы «ENCODE».

Биологические исследования являются фундаментом медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой промышленности и других отраслях человеческой деятельности.

Хорошо известно, что только «зеленая революция» 1950-х годов позволила хотя бы частично решить проблему обеспечения быстро растущего населения Земли продуктами питания, а животноводство - кормами за счет внедрения новых сортов растений и прогрессивных технологий их выращивания. В связи с тем, что генетически запрограммированные свойства сельскохозяйственных культур уже почти исчерпаны, дальнейшее решение продовольственной проблемы связывают с широким введением в производство генетически модифицированных организмов.

Производство многих продуктов питания, таких как сыры, йогурты, колбасы, хлебобулочные изделия и др., также невозможно без использования бактерий и грибов, что является предметом биотехнологии.

Познание природы возбудителей, процессов течения многих заболеваний, механизмов иммунитета, закономерностей наследственности и изменчивости позволили существенно снизить смертность и даже полностью искоренить ряд болезней, таких, например, как черная оспа. С помощью новейших достижений биологической науки решается и проблема репродукции человека.

Значительная часть современных лекарственных препаратов производится на основе природного сырья, а также благодаря успехам генной инженерии, как, например, инсулин, столь необходимый больным сахарным диабетом, в основном синтезируется бактериями, которым перенесен соответствующий ген.

Не менее значимы биологические исследования для сохранения окружающей среды и разнообразия живых организмов, угроза исчезновения которых ставит под сомнение существование человечества.

Наибольшее значение среди достижений биологии имеет тот факт, что они лежат даже в основе построения нейронных сетей и генетического кода в компьютерных технологиях, а также широко используются в архитектуре и других отраслях. Вне всякого сомнения, наступивший XXI век является веком биологии.

Методы познания живой природы

Как и любая другая наука, биология имеет свой арсенал методов. Помимо научного метода познания, применяемого в других отраслях, в биологии широко используются такие методы, как исторический, сравнительно-описательный и др.

Научный метод познания включает в себя наблюдение, формулировку гипотез, эксперимент, моделирование, анализ результатов и выведение общих закономерностей.

Наблюдение - это целенаправленное восприятие объектов и явлений с помощью органов чувств или приборов, обусловленное задачей деятельности. Основным условием научного наблюдения является его объективность, т. е. возможность проверки полученных данных путем повторного наблюдения или применения иных методов исследования, например эксперимента. Полученные в результате наблюдения факты называются данными . Они могут быть как качественными (описывающими запах, вкус, цвет, форму и т. д.), так и количественными , причем количественные данные являются более точными, чем качественные.

На основе данных наблюдений формулируется гипотеза - предположительное суждение о закономерной связи явлений. Гипотеза подвергается проверке в серии экспериментов.Экспериментом называется научно поставленный опыт, наблюдение исследуемого явления в контролируемых условиях, позволяющих выявить характеристики данного объекта или явления. Высшей формой эксперимента является моделирование - исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей. По существу это одна из основных категорий теории познания: на идее моделирования базируется любой метод научного исследования - как теоретический, так и экспериментальный.

Результаты эксперимента и моделирования подвергаются тщательному анализу. Анализом называют метод научного исследования путем разложения предмета на составные части или мысленного расчленения объекта путем логической абстракции. Анализ неразрывно связан с синтезом. Синтез - это метод изучения предмета в его целостности, в единстве и взаимной связи его частей. В результате анализа и синтеза наиболее удачная гипотеза исследования становится рабочей гипотезой , и если она способна устоять при попытках ее опровержения и по-прежнему удачно предсказывает ранее необъясненные факты и взаимосвязи, то она может стать теорией.

Под теорией понимают такую форму научного знания, которая дает целостное представление о закономерностях и существенных связях действительности. Общее направление научного исследования состоит в достижении более высоких уровней предсказуемости. Если теорию не способны изменить никакие факты, а встречающиеся отклонения от нее регулярны и предсказуемы, то ее можно возвести в ранг закона - необходимого, существенного, устойчивого, повторяющегося отношения между явлениями в природе.

По мере увеличения совокупности знаний и совершенствования методов исследования гипотезы и прочно укоренившиеся теории могут оспариваться, видоизменяться и даже отвергаться, поскольку сами научные знания по своей природе динамичны и постоянно подвергаются критическому переосмыслению.

Исторический метод выявляет закономерности появления и развития организмов, становления их структуры и функции. В ряде случаев с помощью этого метода новую жизнь обретают гипотезы и теории, ранее считавшиеся ложными. Так, например, произошло с предположениями Ч. Дарвина о природе передачи сигналов по растению в ответ на воздействия окружающей среды.

Сравнительно-описательный метод предусматривает проведение анатомо-морфологического анализа объектов исследования. Он лежит в основе классификации организмов, выявления закономерностей возникновения и развития различных форм жизни.

Мониторинг - это система мероприятий по наблюдению, оценке и прогнозу изменения состояния исследуемого объекта, в частности биосферы.

Проведение наблюдений и экспериментов требует зачастую применения специального оборудования, такого как микроскопы, центрифуги, спектрофотометры и др.

Микроскопия широко применяется в зоологии, ботанике, анатомии человека, гистологии, цитологии, генетике, эмбриологии, палеонтологии, экологии и других разделах биологии. Она позволяет изучить тонкое строение объектов с использованием световых, электронных, рентгеновских и других типов микроскопов.

Организм - это целостная система, способная к самостоятельному существованию. По количеству клеток, входящих в состав организмов, их делят на одноклеточные и многоклеточные. Клеточный уровень организации у одноклеточных организмов (амебы обыкновенной, эвглены зеленой и др.) совпадает с организменным. В истории Земли был период, когда все организмы были представлены только одноклеточными формами, но они обеспечивали функционирование как биогеоценозов, так и биосферы в целом. Большинство многоклеточных организмов представлено совокупностью тканей и органов, в свою очередь также имеющих клеточное строение. Органы и ткани приспособлены для выполнения определенных функций. Элементарной единицей данного уровня является особь в ее индивидуальном развитии, или онтогенезе, поэтому организменный уровень также называют онтогенетическим . Элементарным явлением данного уровня являются изменения организма в его индивидуальном развитии.

Популяционно-видовой уровень

Популяция - это совокупность особей одного вида, свободно скрещивающихся между собой и проживающих обособленно от других таких же групп особей.

В популяциях происходит свободный обмен наследственной информацией и ее передача потомкам. Популяция является элементарной единицей популяционно-видового уровня, а элементарным явлением в данном случае являются эволюционные преобразования, например мутации и естественный отбор.

Биогеоценотический уровень

Биогеоценоз представляет собой исторически сложившееся сообщество популяций разных видов, взаимосвязанных между собой и окружающей средой обменом веществ и энергии.

Биогеоценозы являются элементарными системами, в которых осуществляется вещественноэнергетический круговорот, обусловленный жизнедеятельностью организмов. Сами биогеоценозы - это элементарные единицы данного уровня, тогда как элементарные явления - это потоки энергии и круговороты веществ в них. Биогеоценозы составляют биосферу и обусловливают все процессы, протекающие в ней.

Биосферный уровень

Биосфера - оболочка Земли, населенная живыми организмами и преобразуемая ими.

Биосфера является самым высоким уровнем организации жизни на планете. Эта оболочка охватывает нижнюю часть атмосферы, гидросферу и верхний слой литосферы. Биосфера, как и все другие биологические системы, динамична и активно преобразуется живыми существами. Она сама является элементарной единицей биосферного уровня, а в качестве элементарного явления рассматривают процессы круговорота веществ и энергии, происходящие при участии живых организмов.

Как уже было сказано выше, каждый из уровней организации живой материи вносит свою лепту в единый эволюционный процесс: в клетке не только воспроизводится заложенная наследственная информация, но и происходит ее изменение, что приводит к возникновению новых сочетаний признаков и свойств организма, в свою очередь подвергающихся действию естественного отбора на популяционно-видовом уровне и т. д.

Биологические системы

Биологические объекты различной степени сложности (клетки, организмы, популяции и виды, биогеоценозы и саму биосферу) рассматривают в настоящее время в качествебиологических систем.

Система - это единство структурных компонентов, взаимодействие которых порождает новые свойства по сравнению с их механической совокупностью. Так, организмы состоят из органов, органы образованы тканями, а ткани формируют клетки.

Характерными чертами биологических систем являются их целостность, уровневый принцип организации, о чем говорилось выше, и открытость. Целостность биологических систем в значительной степени достигается за счет саморегуляции, функционирующей по принципу обратной связи.

К открытым системам относят системы, между которыми и окружающей средой происходит обмен веществ, энергии и информации, например, растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и углекислый газ, выделяя кислород.

Одним из основополагающих понятий в современной биологии является представление о том, что всем живым организмам присуще клеточное строение. Изучением строения клетки, ее жизнедеятельности и взаимодействия с окружающей средой занимается наукацитология , в настоящее время чаще именуемая клеточной биологией. Своему появлению цитология обязана формулировке клеточной теории (1838–1839 гг., М. Шлейден, Т. Шванн, дополнена в 1855 г. Р. Вирховым).

Клеточная теория является обобщенным представлением о строении и функциях клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Основные положения клеточной теории:

Клетка - единица строения, жизнедеятельности, роста и развития живых организмов - вне клетки жизни нет. Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование. Клетки всех организмов сходны по своему химическому составу, строению и функциям. Новые клетки образуются только в результате деления материнских клеток («клетка от клетки »). Клетки многоклеточных организмов образуют ткани, из тканей состоят органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток. Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток - дифференцировка.

Благодаря созданию клеточной теории стало понятно, что клетка является мельчайшей единицей жизни, элементарной живой системой, которой присущи все признаки и свойства живого. Формулировка клеточной теории стала важнейшей предпосылкой развития воззрений на наследственность и изменчивость, так как выявление их природы и присущих им закономерностей неизбежно наводило на мысль об универсальности строения живых организмов. Выявление единства химического состава и плана строения клеток послужило толчком и для развития представлений о происхождении живых организмов и их эволюции. Кроме того, происхождение многоклеточных организмов из единственной клетки в процессе эмбрионального развития стало догмой современной эмбриологии.

В живых организмах встречается около 80 химических элементов, однако только для 27 из этих элементов установлены их функции в клетке и организме. Остальные элементы присутствуют в незначительных количествах, и, по-видимому, попадают в организм с пищей, водой и воздухом. Содержание химических элементов в организме существенно различается. В зависимости от концентрации их делят на макроэлементы и микроэлементы.

Концентрация каждого из макроэлементов в организме превышает 0,01 %, а их суммарное содержание - 99 %. К макроэлементам относят кислород, углерод, водород, азот, фосфор, серу, калий, кальций, натрий, хлор, магний и железо. Первые четыре из перечисленных элементов (кислород, углерод, водород и азот) называют такжеорганогенными , поскольку они входят в состав основных органических соединений. Фосфор и сера также являются компонентами ряда органических веществ, например белков и нуклеиновых кислот. Фосфор необходим для формирования костей и зубов.

Без оставшихся макроэлементов невозможно нормальное функционирование организма. Так, калий, натрий и хлор участвуют в процессах возбуждения клеток. Калий также необходим для работы многих ферментов и удержания воды в клетке. Кальций входит в состав клеточных стенок растений, костей, зубов и раковин моллюсков и требуется для сокращения мышечных клеток, а также для внутриклеточного движения. Магний является компонентом хлорофилла - пигмента, обеспечивающего протекание фотосинтеза. Он также принимает участие в биосинтезе белка. Железо, помимо того, что оно входит в состав гемоглобина, переносящего кислород в крови, необходимо для протекания процессов дыхания и фотосинтеза, а также для функционирования многих ферментов.

Микроэлементы содержатся в организме в концентрациях менее 0,01 %, а их суммарная концентрация в клетке не достигает и 0,1 %. К микроэлементам относятся цинк, медь, марганец, кобальт, йод, фтор и др. Цинк входит в состав молекулы гормона поджелудочной железы - инсулина, медь требуется для процессов фотосинтеза и дыхания. Кобальт является компонентом витамина В12, отсутствие которого приводит к анемии. Йод необходим для синтеза гормонов щитовидной железы, обеспечивающих нормальное протекание обмена веществ, а фтор связан с формированием эмали зубов.

Как недостаток, так и избыток или нарушение обмена макро- и микроэлементов приводят к развитию различных заболеваний. В частности, недостаток кальция и фосфора вызывает рахит, нехватка азота - тяжелую белковую недостаточность, дефицит железа - анемию, а отсутствие йода - нарушение образования гормонов щитовидной железы и снижение интенсивности обмена веществ. Уменьшение поступления фтора с водой и пищей в значительной степени обусловливает нарушение обновления эмали зубов и, как следствие, предрасположенность к кариесу. Свинец токсичен почти для всех организмов. Его избыток вызывает необратимые повреждения головного мозга и центральной нервной системы, что проявляется потерей зрения и слуха, бессонницей, почечной недостаточностью, судорогами, а также может привести к параличу и такому заболеванию, как рак. Острое отравление свинцом сопровождается внезапными галлюцинациями и заканчивается комой и смертью.

Недостаток макро- и микроэлементов можно компенсировать путем увеличения их содержания в пище и питьевой воде, а также за счет приема лекарственных препаратов. Так, йод содержится в морепродуктах и йодированной соли, кальций - в яичной скорлупе и т. п.

Клетки растений

Растения относятся к эукариотическим организмам, следовательно, их клетки обязательно содержат ядро хотя бы на одном из этапов развития. Также в цитоплазме растительных клеток имеются разнообразные органоиды, однако их отличительным свойством является наличие пластид, в частности хлоропластов, а также крупных вакуолей, наполненных клеточным соком. Основное запасающее вещество растений - крахмал - откладывается в виде зерен в цитоплазме, особенно в запасающих органах. Еще одним существенным признаком растительных клеток является наличие целлюлозных клеточных оболочек. Следует отметить, что у растений клетками принято называть и образования, живое содержимое которых отмерло, а клеточные стенки остались. Нередко эти клеточные стенки пропитываются лигнином в процессе одревеснения, или суберином при опробковении.

Ткани растений

В отличие от животных, у растений клетки склеены углеводной срединной пластинкой, между ними также могут быть межклетники, заполненные воздухом. В течение жизни ткани могут изменять свои функции, например, клетки ксилемы вначале выполняют проводящую функцию, а затем - опорную. У растений насчитывают до 20–30 типов тканей, объединяющих около 80 видов клеток. Ткани растений делят на образовательные и постоянные.

Образовательные , или меристематические, ткани принимают участие в процессах роста растения. Они расположены на верхушках побегов и корней, в основаниях междоузлий, образуют слой камбия между лубом и древесиной в стебле, а также подстилают пробку в одревесневших побегах. Постоянное деление этих клеток поддерживает процесс неограниченного роста растений: образовательные ткани верхушек побега и корня, а у некоторых растений - и междоузлий обеспечивают рост растений в длину, а камбий - в толщину. При повреждении растения из клеток, оказавшихся на поверхности, формируются раневые образовательные ткани, которые заполняют возникшие промежутки.

Постоянные ткани растений специализируются на выполнении определенных функций, что отражается на их строении. Они неспособны к делению, однако при определенных условиях могут вновь приобретать эту способность (за исключением мертвых тканей). К постоянным тканям относятся покровные, механические, проводящие и основные.

Покровные ткани растений защищают их от испарения, механических и термических повреждений, проникновения микроорганизмов, обеспечивают обмен веществ с окружающей средой. К покровным тканям относятся кожица и пробка.

Кожица , или эпидерма , - это однослойная ткань, лишенная хлоропластов. Кожица покрывает листья, молодые побеги, цветки и плоды. Она пронизана устьицами и может нести различные волоски и железки. Сверху кожица покрыта кутикулой из жироподобных веществ, которая защищает растения от избыточного испарения. Для этого же предназначены и некоторые волоски на ее поверхности, тогда как железки и железистые волоски могут выделять различные секреты, в том числе воду, соли, нектар и др.

Устьица - это специальные образования, через которые происходит испарение воды -транспирация . В устьицах замыкающие клетки окружают устьичную щель, под ними располагается свободное пространство. Замыкающие клетки устьиц чаще всего имеют бобовидную форму, в них встречаются хлоропласты и зерна крахмала. Внутренние стенки замыкающих клеток устьиц утолщены. Если замыкающие клетки насыщены водой, то внутренние стенки растягиваются и устьице открывается. Насыщение водой замыкающих клеток связано с активным транспортом в них ионов калия и других осмотически активных веществ, а также накоплением растворимых углеводов в процессе фотосинтеза. Через устьица происходит не только испарение воды, но и газообмен в целом - поступление и удаление кислорода и углекислого газа, которые проникают далее по межклетникам и потребляются клетками в процессе фотосинтеза, дыхания и т. д.

Клетки пробки , которая в основном покрывает одревесневшие побеги, пропитываются жироподобным веществом суберином, что, с одной стороны, вызывает гибель клеток, а с другой - пред отвращает испарение с поверхности растения, обеспечивая тем самым термическую и механическую защиту. В пробке, как и в кожице, имеются специальные образования для проветривания - чечевички . Клетки пробки образуются в результате деления пробкового камбия, подстилающего ее.

Механические ткани растений выполняют опорную и защитную функции. К ним относят колленхиму и склеренхиму. Колленхима - это живая механическая ткань, имеющая удлиненные клетки с утолщенными целлюлозными стенками. Она характерна для молодых, растущих органов растений - стеблей, листьев, плодов и т. д. Склеренхима - это мертвая механическая ткань, живое содержимое клеток которой отмирает вследствие одревеснения клеточных стенок. По сути дела, от клеток склеренхимы остаются только утолщенные и одревесневшие клеточные стенки, что как нельзя лучше способствует выполнению ими соответствующих функций. Клетки механической ткани чаще всего вытянуты в длину и называются волокнами. Они сопровождают клетки проводящей ткани в составе луба и древесины. Одиночные или собранные в группыкаменистые клетки склеренхимы округлой или звездчатой формы обнаруживаются в незрелых плодах груши, боярышника и рябины, в листьях кувшинки и чая.

По проводящей ткани осуществляется транспорт веществ по телу растения. Существует два вида проводящей ткани: ксилема и флоэма. В состав ксилемы , или древесины , входят проводящие элементы, механические волокна и клетки основной ткани. Живое содержимое клеток проводящих элементов ксилемы - сосудов и трахеид - рано отмирает, от них остаются только одревесневшие клеточные стенки, как и в склеренхиме. Функцией ксилемы является восходящий транспорт воды и растворенных в ней минеральных солей от корня к побегу. Флоэма , или луб , также является сложной тканью, поскольку образована проводящими элементами, механическими волокнами и клетками основной ткани. Клетки проводящих элементов - ситовидных трубок - живые, однако в них исчезают ядра, а цитоплазма смешивается с клеточным соком для облегчения транспорта веществ. Клетки располагаются одна над другой, клеточные стенки между ними имеют многочисленные отверстия, что делает их похожими на сито, из-за чего клетки называют ситовидными . По флоэме транспортируются вода и растворенные в ней органические вещества из надземной части растения в корень и другие органы растения. Загрузку и разгрузку ситовидных трубок обеспечивают прилегающие к ним клетки-спутницы. Основная ткань не только заполняет промежутки между другими тканями, но и выполняет питательную, выделительную и другие функции. Питательную функцию выполняют фотосинтезирующие и запасающие клетки. Большей частью это паренхимные клетки , т. е. они имеют почти одинаковые линейные размеры: длину, ширину и высоту. Основные ткани расположены в листьях, молодых стеблях, плодах, семенах и других запасающих органах. Некоторые виды основной ткани способны выполнять всасывающую функцию, как, например, клетки волосконосного слоя корня. Выделение осуществляют разнообразные волоски, железки, нектарники, смоляные ходы и вместилища. Особое место среди основных тканей принадлежит млечникам, в клеточном соке которых накапливаются каучук, гутта и др. вещества. У водных растений возможно разрастание межклетников основной ткани, вследствие чего образуются крупные полости, с помощью которых осуществляется проветривание.

Органы растений

Вегетативные и генеративные органы

В отличие от животных, тело растений расчленено на небольшое количество органов. Они делятся на вегетативные и генеративные. Вегетативные органы поддерживают жизнедеятельность организма, но не участвуют в процессе полового размножения, тогда как генеративные органы выполняют именно эту функцию. К вегетативным органам относят корень и побег, а к генеративным (у цветковых) - цветок, семя и плод.

Корень

Корень - это подземный вегетативный орган, выполняющий функции почвенного питания, закрепления растения в почве, транспорта и запасания веществ, а также вегетативного размножения.

Морфология корня. Корень имеет четыре зоны: роста, всасывания, проведения и корневой чехлик. Корневой чехлик защищает клетки зоны роста от повреждения и облегчает продвижение корня среди твердых частиц почвы. Он представлен крупными клетками, способными со временем ослизняться и отмирать, что облегчает рост корня.

Зона роста состоит из клеток, способных к делению. Часть из них после деления увеличивается в размерах в результате растяжения и начинает выполнять присущие им функции. Иногда зону роста подразделяют на две зоны: деления и растяжения.

В зоне всасывания расположены клетки корневых волосков, выполняющие функцию всасывания воды и минеральных веществ. Клетки корневых волосков живут недолго, слущиваясь через 7–10 дней после образования.

В зоне проведения , или боковых корней , вещества транспортируются из корня в побег, а также происходит ветвление корня, т. е. образование боковых корней, что способствует заякориванию растения. Кроме того, в данной зоне возможно запасание веществ и закладывание почек, с помощью которых может происходить вегетативное размно

Все, что связано с жизнью на Земле, является частью биологии, которая и занимается изучением жизни. Зачем нужна биология? Эта наука затрагивает множество аспектов человеческого существования, имеется огромное количество профессий, так или иначе затрагивающих эту фундаментальную науку. Этот список включает в себя карьерный рост и безграничное количество вариантов трудоустройства.

Биологические науки

Зачем нужна биология? Биологические науки - одно из самых широких и самых важных направлений в мире на сегодняшний день. Биология охватывает все, начиная от молекулярного исследования жизненных процессов вплоть до изучения животных и растительных сообществ. Что можно сделать с дипломом по биологии? В зависимости от индивидуальных интересов и предпочтений можно выбрать себе любую профессию по душе в таких областях, как здравоохранение, медицина, окружающая среда, образование, биотехнологии, криминалистика, политика и многие другие.

Для чего нужно изучать биологию?

Для чего нужна биология? Ее изучение учит задавать вопросы, делать замечания, оценивать доказательства и решать проблемы. Биологи узнают, как живые существа взаимодействуют друг с другом, из чего состоят и как развиваются. Они изучают эволюцию, естественную историю и вопросы защиты редких видов растений и животных, а также занимаются исследованиями взаимодействий живых организмов со светом, окружающей средой и друг с другом.

Чем занимаются биологи?

Биологи изучают мир природы с использованием новейших научных технологий, средств и методов, как в лабораторных условиях, так и в естественной среде, чтобы понять, как работают живые системы. А им зачем биология? Многие работают в экзотических местах по всему миру, и то, что они обнаруживают, может найти практическое применение для решения конкретных проблем. Биологи развивают кампании общественного здравоохранения для борьбы с такими заболеваниями как туберкулез, СПИД, рак и болезни сердца. Их задачей является также предотвращение распространения редких, неизлечимых болезней, таких, например, как печально известный вирус Эбола.

В каких профессиях нужна биология?

Где нужна биология? Зная биологию, можно построить карьеру в фармацевтике, биотехнологии или заниматься медицинскими исследованиями. Эти отрасли помогают лучше понимать мир природы, решают вопросы личного благополучия, а также затрагивают темы ухудшения состояния окружающей среды, которое угрожает здоровью человека, и истощение природных и продовольственных запасов.

Ветеринары, занимающиеся лечением больных и раненых животных, врачи, стоматологи, медсестры и другие медицинские работники поддерживают общее здоровье и самочувствие своих пациентов. Многие из этих профессий требуют дополнительного образования и профессиональной подготовки. В сфере природопользования и охраны окружающей среды биологи занимаются решением экологических проблем и сохранением природного разнообразия для будущих поколений.


Где и зачем нужна биология?



Биология - красивое название (био - жизнь, логос - наука) - наука о жизни. О нашей жизни, повседневной. Мы, даже не задумываясь, каждый день сталкиваемся с ней, пользуемся ее законами, порядками, знаниями, которые она нам дает, и бежим дальше… Каждый день с экрана телевизора нам твердят о дисбактериозах, пищевых продуктах, кариесе, старении, аллергии и многом другом, и в основе этого тоже лежит биология. Но только, те, кто понимают ее, «дружат» с ней, смогут разобраться в изобилии товаров и лекарств, различить качественные и некачественные продукты. И нельзя забывать, что именно биология прививает основы здорового образа жизни, учит оказывать основы первой медицинской помощи.

Как во всем это разнообразии не потеряться, вспомнить, чему учили в школе, и применить эти знания на практике? Всё это достаточно сложно, но возможно. Помощь в этом должен оказать учитель, преподавая школьный предмет биология. Ведь важно непросто «вбить» в голову учащихся знания, но и научить их пользоваться ими. Большинство из нас, закрыв школьный учебник, уже никогда не вспомнят, о том, чему учились на уроках, и уж, тем более, не смогут применить полученные знания на практике. В этом и заключается наша проблема, знания школы оторваны от жизни.

Но как быть? Вопрос, который всегда мучает меня, когда я готовлюсь к урокам. Перед каждым уроком, я не просто пролистываю учебную литературу, но пользуюсь научно-популярными статьями, книгами, которые дают знания не школьнику, а обывателю. Начиная урок «Почвенное питание растений» я не ставлю цель изучить почвенное питание, но цель «вырастить растение, которое даст хороший урожай». В процессе решения задачи учащиеся понимают необходимость использования минеральных удобрений, значения воды, а также опережающее, они узнают термин «пикировка». На уроке вегетативное размножение растений, необходимо поставить цель вырастить сад на своем домашнем участке и описать способы размножения растений, которые будут использованы при решении данной задачи. При изучении генетики учащиеся не изучают законы Менделя, а пытаются вывести новые сорта с определенными признаками. Конечно, очень важен раздел анатомии, где рассматривается оказание первой медицинской помощи. И ребята друг на друге отрабатывают способы оказания помощи, чтобы в случае опасности они смогли оказать помощь другим.

Формированию здорового образа жизни также отводится на уроках анатомии и физиологии человека значительно место. Ведь с каждым годом растет число людей, страдающих алкогольной зависимостью, наркотической, никотиновой. И как ни грустно признать, среди них дети. Не менее важно экологическое воспитание, поскольку состояние окружающей среды постоянно ухудшается, многие виды растений и животных исчезают, важно научить бережно, относиться к природе, и соблюдать элементарные правила поведения.

На уроках биологии также важно и патриотическое воспитание, ведь не раз мы говорим о великих русских ученых, внесших вклад в развитие биологии.

Говорить о значении биологии в жизни человека, и о необходимости грамотного ее преподавания можно бесконечно долго, но не в этом суть. Все зависит от нас, учителей, научить пользоваться знаниями учащихся, должны мы, и это главная задача.

Биологией называется наука, занимающаяся изучением жизни, форм и закономерностей развития всех живых организмов. на данный момент биология является целым комплексом научных дисциплин, которые занимаются изучением целых или отдельных живых систем. Данная наука очень важна для современного образования, потому что полезно знать все о поэтапном развитии организмов, чтобы материалистическое мировоззрение сформировалось гармонично.

Нужна ли детям биология?

Цели преподавания биологии в школах обозначены в перечне знаний и умений, которые отвечают всем правилам и требованиям государственного образовательного стандарта.

Каждый человек хочет быть здоровым. Но, сохранить собственное здоровье сложно без знаний элементарных законов биологии. К примеру, многие молодые люди прибегают к помощи различных диет, помогающих сбросить лишний вес. Эти самые диеты представлены в различных журналах.

Но эти люди даже не подозревают, что достаточно знать элементарные основы функционирования живых существ, помогающие сохранить свое здоровье. Зачастую, люди слепо верят прочитанному в журнале или газете и наносят огромный вред собственному организму. Так нужна ли эта наука детям?

Безусловно, нужна! Каждый человек должен правильно понимать окружающую природу и собственный организм.

Что развивает биология?

Главной целью биологической науки является формирование биологической культуры у человека. К задачам науки можно отнести следующее:

  • развитие у учеников представлений о живых организмах, их взаимодействии с окружающей природой, о многообразии видов, обо всех закономерностях развития живы существ;
  • понимание учащимися важности знаний о развитии живых существ их значении в человеческом мире.

Если процесс обучения в школе построен правильно, то у ребенка формируется любознательность и проявляется интерес к науке, он старается углубляться в нее во внеурочное время. Например, в качестве дополнительного образования на сегодняшний день люди пользуются интернет - курсами. Биологию, как и обществознание можно изучать по скайпу, например, в с сайтом Distance-teacher.ru/biologiya .

При правильной постановке преподавания этого предмета в школе, у детей формируется необходимое материалистическое мировоззрение, которое играет важную роль в современном обществе.

Среди всех естественнонаучных дисциплин именно этот предмет занимает одно из первых мест и не зря! Благодаря этой науке у современных детей формируется правильное понимание жизни, как главной ценности, которую необходимо беречь. Дети осознают, что землю и живые существа нужно охранять любыми средствами и методами.

На уроках преподаватели стараются заинтересовать школьников, подталкивая их к самообразованию, которое сейчас не так сложно реализовать. Существуют онлайн курсы и уроки обучения по скайпу.

Таким образом, можно сказать, что знания основ этой науки – важнейшая частица человеческих знаний. Без биологических знаний невозможно мыслить с экологической точки зрения, нельзя понять суть научных статей на природные тематики. Именно биологические знания считаются основополагающими начального этапа жизни и ее сохранности. Выживание целой системы живых существ, помогающих развитию человечества, возможно лишь в том случае, если каждый человек будет биологически просвещен.