Когда система имеет много решений. Несовместные системы. Системы с общим решением. Частные решения. Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы "Система линейных алгебраических уравнений. Основные термины. Матричная форма записи" . В частности, нужны такие понятия, как матрица системы и расширенная матрица системы , поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы - буквой $\widetilde{A}$.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $\rang A=\rang\widetilde{A}$.

Напомню, что система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если $\rang A=\rang\widetilde{A}$, то решение есть; если $\rang A\neq\rang\widetilde{A}$, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква $n$, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

  1. Если $\rang A\neq\rang\widetilde{A}$, то СЛАУ несовместна (не имеет решений).
  2. Если $\rang A=\rang\widetilde{A} < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений).
  3. Если $\rang A=\rang\widetilde{A} = n$, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют - то сколько.

Пример №1

Исследовать СЛАУ $ \left \{\begin{aligned} & -3x_1+9x_2-7x_3=17;\\ & -x_1+2x_2-4x_3=9;\\ & 4x_1-2x_2+19x_3=-42. \end{aligned}\right.$ на совместность. Если СЛАУ совместна, указать количество решений.

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $\widetilde{A}$, запишем их:

$$ A=\left(\begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right);\; \widetilde{A}=\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right). $$

Нужно найти $\rang A$ и $\rang\widetilde{A}$. Для этого есть много способов, некоторые из которых перечислены в разделе "Ранг матрицы" . Обычно для исследования таких систем применяют два метода: "Вычисление ранга матрицы по определению" или "Вычисление ранга матрицы методом элементарных преобразований" .

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг - это наивысший порядок миноров матрицы , среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ - это определитель матрицы $A$, т.е. $\Delta A$. Для вычисления определителя применим формулу №2 из темы "Формулы для вычисления определителей второго и третьего порядков" :

$$ \Delta A=\left| \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right|=-21. $$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $\rang A=3$.

Нам требуется найти также и $\rang\widetilde{A}$. Давайте посмотрим на структуру матрицы $\widetilde{A}$. До черты в матрице $\widetilde{A}$ находятся элементы матрицы $A$, причём мы выяснили, что $\Delta A\neq 0$. Следовательно, у матрицы $\widetilde{A}$ есть минор третьего порядка, который не равен нулю. Миноров четвёртого порядка матрицы $\widetilde{A}$ составить мы не можем, поэтому делаем вывод: $\rang\widetilde{A}=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение (хотя бы одно). Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система является определённой, т.е. имеет единственное решение.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $\Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы .

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $\Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может - ни одного. Если $\Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Подробно это метод описан в соответствующей теме . Мы станем вычислять ранг матрицы $\widetilde{A}$. Почему именно матрицы $\widetilde{A}$, а не $A$? Дело в том, что матрица $A$ является частью матрицы $\widetilde{A}$, поэтому вычисляя ранг матрицы $\widetilde{A}$ мы одновременно найдем и ранг матрицы $A$.

\begin{aligned} &\widetilde{A} =\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right) \rightarrow \left|\text{меняем местами первую и вторую строки}\right| \rightarrow \\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ -3 & 9 &-7 & 17\\ 4 & -2 & 19 & -42 \end{array} \right) \begin{array} {l} \phantom{0} \\ r_2-3r_1\\ r_3+4r_1 \end{array} \rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 6 & 3 & -6 \end{array} \right) \begin{array} {l} \phantom{0} \\ \phantom{0}\\ r_3-2r_2 \end{array}\rightarrow\\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right) \end{aligned}

Мы привели матрицу $\widetilde{A}$ к ступенчатому виду . Полученная ступенчатая матрица имеет три ненулевых строки, поэтому её ранг равен 3. Следовательно, и ранг матрицы $\widetilde{A}$ равен 3, т.е. $\rang\widetilde{A}=3$. Делая преобразования с элементами матрицы $\widetilde{A}$ мы одновременно преобразовывали и элементы матрицы $A$, расположенные до черты. Матрица $A$ также приведена к ступенчатому виду: $\left(\begin{array} {ccc} -1 & 2 & -4 \\ 0 & 3 &5 \\ 0 & 0 & -7 \end{array} \right)$. Вывод: ранг матрицы $A$ также равен 3, т.е. $\rang A=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение. Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система определена, т.е. имеет единственное решение.

Какие преимущества второго способа? Главное преимущество - это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса . Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор - это дело вкуса.

Ответ : Заданная СЛАУ совместна и определена.

Пример №2

Исследовать СЛАУ $ \left\{ \begin{aligned} & x_1-x_2+2x_3=-1;\\ & -x_1+2x_2-3x_3=3;\\ & 2x_1-x_2+3x_3=2;\\ & 3x_1-2x_2+5x_3=1;\\ & 2x_1-3x_2+5x_3=-4. \end{aligned} \right.$ на совместность.

Находить ранги матрицы системы и расширенной матрицы системы будем методом элементарных преобразований . Расширенная матрица системы: $\widetilde{A}=\left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -1 & 3 & 2 \\ 3 & -2 & 5 & 1 \\ 2 & -3 & 5 & -4 \end{array} \right)$. Найдём требуемые ранги, преобразовывая расширенную матрицу системы:

$$ \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -3 & 5 & -4 \\ 3 & -2 & 5 & 1 \\ 2 & -1 & 3 & 2 \end{array} \right) \begin{array} {l} \phantom{0}\\r_2+r_1\\r_3-2r_1\\ r_4-3r_1\\r_5-2r_1\end{array}\rightarrow \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 4 \\ 0 & 1 & -1 & 4 \end{array} \right) \begin{array} {l} \phantom{0}\\\phantom{0}\\r_3-r_2\\ r_4-r_2\\r_5+r_2\end{array}\rightarrow\\ $$ $$ \rightarrow\left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right) \begin{array} {l} \phantom{0}\\\phantom{0}\\\phantom{0}\\ r_4-r_3\\\phantom{0}\end{array}\rightarrow \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) $$

Расширенная матрица системы приведена к ступенчатому виду . Ранг ступенчатой матрицы равен количеству её ненулевых строк, поэтому $\rang\widetilde{A}=3$. Матрица $A$ (до черты) тоже приведена к ступенчатому виду, и ранг её равен 2, $\rang{A}=2$.

Так как $\rang A\neq\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система несовместна (т.е. не имеет решений).

Ответ : система несовместна.

Пример №3

Исследовать СЛАУ $ \left\{ \begin{aligned} & 2x_1+7x_3-5x_4+11x_5=42;\\ & x_1-2x_2+3x_3+2x_5=17;\\ & -3x_1+9x_2-11x_3-7x_5=-64;\\ & -5x_1+17x_2-16x_3-5x_4-4x_5=-90;\\ & 7x_1-17x_2+23x_3+15x_5=132. \end{aligned} \right.$ на совместность.

Приводим расширенную матрицу системы к ступенчатому виду:

$$ \left(\begin{array}{ccccc|c} 2 & 0 & 7 & -5 & 11 & 42\\ 1 & -2 & 3 & 0 & 2 & 17 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right) \overset{r_1\leftrightarrow{r_3}}{\rightarrow} $$ $$ \rightarrow\left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 2 & 0 & 7 & -5 & 11 & 42\\ -3 & 9 & -11 & 0 & -7 & -64\\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right) \begin{array} {l} \phantom{0}\\ r_2-2r_1 \\r_3+3r_1 \\ r_4+5r_1 \\ r_5-7r_1 \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 3 & -2 & 0 & -1 & -13\\ 0 & 7 & -1 & -5 & 6 & -5 \\ 0 & -3 & 2 & 0 & 1 & 13 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\4r_3+3r_2 \\ 4r_4-7r_2 \\ 4r_5+3r_2 \end{array} \rightarrow $$ $$ \rightarrow\left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 0 & -11 & 15 & -25 & -76\\ 0 & 0 & -11 & 15 & -25 & -76 \\ 0 & 0 & 11 & -15 & 25 & 76 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\\phantom{0} \\ r_4-r_3 \\ r_5+r_2 \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 0 & -11 & 15 & -25 & -76\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) $$

Мы привели расширенную матрицу системы и саму матрицу системы к ступенчатому виду . Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $\rang\widetilde{A}=\rang{A}\lt{n}$, то согласно следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ : система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.

Продолжаем разбираться с системами линейных уравнений. До сих пор мы рассматривали системы, которые имеют единственное решение. Такие системы можно решить любым способом: методом подстановки («школьным»), по формулам Крамера, матричным методом , методом Гаусса . Однако на практике широко распространены еще два случая, когда:

1) система несовместна (не имеет решений);

2) система имеет бесконечно много решений.

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса . На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса

Сами элементарные преобразования матрицы – точно такие же , разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Есть такая теорема, которая утверждает:«Если количество уравнений в системе меньше количества переменных , то система либо несовместна, либо имеет бесконечно много решений». И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1). На левой верхней ступеньке нам нужно получить (+1) или (–1). Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Мы поступили так. К первой строке прибавляем третью строку, умноженную на (–1).

(2). Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую, умноженную на 5.

(3). После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную (–1) на второй ступеньке. Третью строку делим на (–3).



(4). К третьей строке прибавляем вторую строку. Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований:

. Ясно, что так быть не может.

Действительно, перепишем полученную матрицу

обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида, где λ – число, отличное от нуля, то система несовместна (не имеет решений).

Как записать концовку задания? Необходимо записать фразу:

«В результате элементарных преобразований получена строка вида , где λ 0 ». Ответ: «Система не имеет решений (несовместна)».

Обратите внимание, что в этом случае нет никакого обратного хода алгоритма Гаусса, решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Снова напоминаем, что Ваш ход решения может отличаться от нашего хода решения, метод Гаусса не задаёт однозначного алгоритма, о порядке действий и о самих действиях надо догадываться в каждом случае самостоятельно.

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же , как только появилась строка вида , где λ 0 . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица

.

Эта матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет необходимости, так как появилась строка вида , где λ 0 . Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок студенту, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия. Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3:

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом и его универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1). Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на (–4). К третьей строке прибавляем первую строку, умноженную на (–2). К четвертой строке прибавляем первую строку, умноженную на (–1).

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: к четвертой строке прибавляем первую строку, умноженную на (–1) – именно так!

(2). Последние три строки пропорциональны, две из них можно удалить. Здесь опять нужно проявить повышенное внимание , а действительно ли строки пропорциональны? Для перестраховки не лишним будет вторую строку умножить на (–1), а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них. В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки , где λ 0, тоже нет. Значит, это и есть третий оставшийся случай – система имеет бесконечно много решений.

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы .

Общее решение системы найдем с помощью обратного хода метода Гаусса. Для систем уравнений с бесконечным множеством решений появляются новые понятия: «базисные переменные» и «свободные переменные» . Сначала определим, какие переменные у нас являются базисными , а какие переменные - свободными . Не обязательно подробно разъяснять термины линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные .

Базисные переменные всегда «сидят» строго на ступеньках матрицы . В данном примере базисными переменными являются x 1 и x 3 .

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: x 2 и x 4 – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные . Обратный ход алгоритма Гаусса традиционно работает снизу вверх. Из второго уравнения системы выражаем базисную переменную x 3:

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную x 1 через свободные переменные x 2 и x 4:

В итоге получилось то, что нужно – все базисные переменные (x 1 и x 3) выражены только через свободные переменные (x 2 и x 4):

Собственно, общее решение готово:

.

Как правильно записать общее решение? Прежде всего, свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные x 2 и x 4 следует записать на второй и четвертой позиции:

.

Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:

Из общего решения системы можно найти бесконечно много частных решений . Это очень просто. Свободными переменные x 2 и x 4 называют так, потому что им можно придавать любые конечные значения . Самыми популярными значениями являются нулевые значения, поскольку при этом частное решение получается проще всего.

Подставив (x 2 = 0; x 4 = 0) в общее решение, получим одно из частных решений:

, или – это частное решение, соответствующее свободным переменным при значениях (x 2 = 0; x 4 = 0).

Другой сладкой парочкой являются единицы, подставим (x 2 = 1 и x 4 = 1) в общее решение:

, т. е. (-1; 1; 1; 1) – еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений, так как свободным переменным мы можем придать любые значения.

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение (-1; 1; 1; 1) и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно. Поэтому, прежде всего, более основательна и надёжна проверка общего решения.

Как проверить полученное общее решение ?

Это несложно, но довольно требует длительных преобразований. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:

Получена правая часть исходного первого уравнения системы.

В левую часть второго уравнения системы:

Получена правая часть исходного второго уравнения системы.

И далее – в левые части третьего и четвертого уравнение системы. Эта проверка дольше, но зато гарантирует стопроцентную правильность общего решения. Кроме того, в некоторых заданиях требуют именно проверку общего решения.

Пример 4:

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений.

Пример 5:

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение: Запишем расширенную матрицу системы и, с помощью элементарных преобразований, приведем ее к ступенчатому виду:

(1). Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.

(2). К третьей строке прибавляем вторую строку, умноженную на (–5). К четвертой строке прибавляем вторую строку, умноженную на (–7).

(3). Третья и четвертая строки одинаковы, одну из них удаляем. Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому – базисные переменные.

Свободная переменная, которой не досталось ступеньки здесь всего одна: .

(4). Обратный ход. Выразим базисные переменные через свободную переменную:

Из третьего уравнения:

Рассмотрим второе уравнение и подставим в него найденное выражение :

, , ,

Рассмотрим первое уравнение и подставим в него найденные выражения и :

Таким образом, общее решение при одной свободной переменной x 4:

Еще раз, как оно получилось? Свободная переменная x 4 одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , , - тоже на своих местах.

Сразу выполним проверку общего решения.

Подставляем базисные переменные , , в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, найдено верное общее решение.

Теперь из найденного общего решения получим два частных решения. Все переменные выражаются здесь через единственную свободную переменную x 4 . Ломать голову не нужно.

Пусть x 4 = 0, тогда – первое частное решение.

Пусть x 4 = 1, тогда – еще одно частное решение.

Ответ: Общее решение: . Частные решения:

и .

Пример 6:

Найти общее решение системы линейных уравнений.

Проверка общего решения у нас уже сделана, ответу можно доверять. Ваш ход решения может отличаться от нашего хода решения. Главное, чтобы совпали общие решения. Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановимся на особенностях решения, которые не встретились в прорешанных примерах. В общее решение системы иногда может входить константа (или константы).

Например, общее решение: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных . Однако метод Гаусса работает в самых суровых условиях. Следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Повторимся в своем совете – чтобы комфортно себя чувствовать при решении системы методом Гаусса, следует набить руку и прорешать хотя бы десяток систем.

Решения и ответы:

Пример 2:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.

Выполненные элементарные преобразования:

(1) Первую и третью строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на (–6). К третьей строке прибавили первую строку, умноженную на (–7).

(3) К третьей строке прибавили вторую строку, умноженную на (–1).

В результате элементарных преобразований получена строка вида , где λ 0 . Значит, система несовместна. Ответ: решений нет.

Пример 4:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:

(1). Ко второй строке прибавили первую строку, умноженную на 2. К третьей строке прибавили первую строку, умноженную на 3.

Для второй ступеньки нет единицы , и преобразование (2) направлено на её получение.

(2). К третьей строке прибавили вторую строку, умноженную на –3.

(3). Вторую с третью строки поменяли местами (переставили полученную –1 на вторую ступеньку)

(4). К третьей строке прибавили вторую строку, умноженную на 3.

(5). У первых двух строк сменили знак (умножили на –1), третью строку разделили на 14.

Обратный ход:

(1). Здесь – базисные переменные (которые на ступеньках), а – свободные переменные (кому не досталось ступеньки).

(2). Выразим базисные переменные через свободные переменные:

Из третьего уравнения: .

(3). Рассмотрим второе уравнение: , частные решения:

Ответ: Общее решение:

Комплексные числа

В этом разделе мы познакомимся с понятием комплексного числа , рассмотрим алгебраическую , тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.

Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять алгебраические действия с «обычными» числа, и помнить тригонометрию.

Сначала вспомним «обычные» Числа. В математике они называются множеством действительных чисел и обозначаются буквой R, либо R (утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой оси обязательно соответствует некоторое действительное число.

Установить, совместна ли система линейных уравнений, с помощью теоремы Кронекера-Капелли часто можно быстрее, чем с помощью метода Гаусса , когда требуется последовательно исключать неизвестные. Основана эта теорема на использовании ранга матрицы .

Теорема Кронекера-Капелли о совместности системы. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы этой системы равен рангу её расширенной матрицы, то есть чтобы .

Ранги этих матриц связаны неравенством , при этом ранг матрицы В может быть лишь на одну единицу больше ранга матрицы A .

Следствие из теоремы Кронекера-Капелли о числе решений. Пусть для системы m линейных уравнений с n неизвестными выполнено условие совместности, то есть ранг матрицы из коэффициентов системы равен рангу её расширенной матрицы. Тогда верно следующее.

Если ранг матрицы системы линейных уравнений равен числу уравнений, то есть , то система совместна при любых свободных членах. В этом случае ранг расширенной матрицы также равен m , так как ранг матрицы не может быть больше числа её строчек.

В ходе доказательства теоремы Кронекера-Капелли были получены явные формулы для решений системы (в случае её совместности). Если уже известно, что система совместна, то, чтобы найти её решения, необходимо:

1) отыскать в матрице системы A ранга отличный от нуля минор порядка, равного рангу матрицы системы, то есть ранга r ;

2) отбросить те уравнения, которые соответствуют строкам матрицы A , не входящим в минор ;

3) члены с коэффициентами, не входящими в , перенести в правую часть, а затем, придавая неизвестным, находящимся в правой части, произвольные значения, определить по формулам Крамера оставшиеся r неизвестных из системы r уравнений с отличным от нуля определителем .

Пример 1.

Решение. Вычисляем ранг матрицы этой системы и ранг расширенной матрицы. В обоих случаях он равен 3. Следовательно, система линейных уравнений совместна. Так как ранг матрицы системы меньше числа неизвестных, то система имеет бесконечно много решений: одно неизвестное может быть взято произвольно. Минор

отличен от нуля, поэтому последнее уравнение отбрасываем и неизвестному придаём произвольное значение .

Оставшиеся неизвестные определяются из системы

Решая последнюю систему по формулам Крамера или иным способом, находим

.

Присоединяя сюда , получаем все решения данной системы линейных уравнений.

Пример 2. Следуя теореме Кронекера-Капелли, установить, совместна ли система уравнений

Если система совместна, то решить её.

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k − r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

  1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует

Глава 8. Системы уравнений

8.2. Система двух линейных уравнений с двумя неизвестными

Определение

Несколько уравнений, в которых одноименные неизвестные обозначают одну и ту же величину, называются системой уравнений .
Система вида называется нормальной формой системы двух линейных уравнений с двумя неизвестными.
Решить такую систему - значит найти множество всех общих для обоих уравнений решений.

А как же решать такую систему?

Решать такую систему можно, например, графически. Обычно такая система графически представляется двумя прямыми линиями, и общим решением этих уравнений (решением системы) будут координаты общей точки двух прямых. Здесь возожны три случая:
1) Прямые (графики) имеют только одну общую точку (пересекаются) - система уравнений имеет единственное решение и она называетсяопределенной .
2) Прямые (графики) не имеют общих точек (параллельны) - система не имеет решения и она называется несовместной .
3) Прямые (графики) имеют бесконечно много общих точек (совпадают) - система имеет бесконечное множество решений и называется неопределенной.

Что-то я пока не понимаю. Может с примерами понятнее будет?

Конечно, сейчас приведем по примеру на каждый случай и все сразу станет понятнее.

Начнем с примера, когда система определенная (имеет единственное решение). Возьмем систему . Построим графики этих функций.

Они пересекаются только в одной точке, следовательно решением этой системы являются только координаты точки: , .

Теперь приведем пример несовместной системы (той, которая не имеет решения). Рассмотрим такую систему .

В этом случае система противоречива: левые части равные, а правые части при этом различны. Графики не имеют общих точек (параллельны), следовательно система не имеет решения.

Ну теперь остался последний случай, когда система неопределенная (имеет бесконечное множество решений). Вот пример такой системы: . Построим графики этих уравнений.

Прямые (графики) имеют бесконечно много общих точек (совпадают), значит система имеет бесконечное множество решений. В этом случае уравнения системы равносильны (умножив второе уравнение на 2 , получим первое уравнение).

Наиболее важным является первый случай. Единственное решение такой системы всегда можно найти графически - иногда точно, а чаще всего приближенно с необходимой степенью точности.

Определение

Две системы уравнений называются равносильными (эквивалентными) , если все решения каждой из них являются и решениями другой (множества решений совпадают) или если обе не имеют решений.