Ксенобиотики накапливаются в организме человека. Экология: Классификация ксенобиотиков. Диоксины. Вредные продукты: список

Лекарственные вещества и промышленные загрязнения, пестициды и продукты бытовой химии, пищевые добавки и консерванты - вот тот поток чужеродных соединений, который со всевозрастающей силой обрушивается на нашу планету и живущие на ней организмы.

Эти синтетические компоненты добавляются к огромному разнообразию чужеродных веществ природного происхождения, которые образуются растениями, грибами, бактериями и другими организмами. Недаром эти соединения получили название «ксенобиотики», т. е. «чуждые жизни ».

В столь острой ситуации все живое давно бы оказалось под угрозой гибели, если бы не обладало механизмами, неустанно поддерживающими свою «химическую чистоту». Организмы высших животных и человека в ответ на введение антигенов образуют антитела ц тем самым нейтрализуют их воздействие на организм. Однако антигенными свойствами, т. е. способностью вызывать образование антител, обладают только высокомолекулярные ксенобиотики - белки, гликопротеиды, некоторые полисахариды и нуклеиновые кислоты. А как же обезвреживаются ксенобиотики низкомолекулярные? Исследования показали, что такую функцию берет на себя цитохром Р-450-оксигеназная система, присутствующая в печени млекопитающих.

Недаром говорят о «барьерной» роли печени, которая является своеобразным фильтром, очищающим организм от вредных веществ. С помощью этой ферментной системы превращаются и тем самым обезвреживаются многие ядовитые для организма неполярные, а значит, нерастворимые в воде соединения - лекарственные вещества, наркотики и др. Задача этой системы - превращение нерастворимых соединений в растворимые в воде, с тем чтобы можно было вывести их из организма.

Цитохром Р-450 обнаружен у многих животных, растений и бактерий. Его нет у бактерий-анаэробов, живущих в бескислородных условиях.

А. И. Арчаков называет цитохром Р-450 «мембранным иммуноглобулином». Последний находится в мембранах эндоплазматического ретикулума. К 4980 г. было известно не менее 20 форм цитохрома Р-450. Множественность форм характерна именно для высших организмов, тогда как бактерии содержат лишь один тип цитохрома Р-450.

Существование множественных форм, вероятно, объясняет широкую субстратную специфичность оксигеназной системы, которая может окислять самые различные молекулы. Предполагается, что в ответ на введение в организм определенного класса ксенобиотиков синтезируется и определенная группа цитохрома Р-450, подобно тому как в ответ на введение макромолекулярного антигена возникают строго комплементарные к нему антитела.

Таким образом, в организме млекопитающих существуют две системы иммунологического надзора. Первая из них - лимфоидная система, уничтожающая клетки и высокомолекулярные соединения, вторая - монооксигеназная система, детоксицирующая ксенобиотики. Если первая иммунная система защищает организм от чужеродных макромолекул, то вторая - от чужеродных низкомолекулярных веществ. Предполагается, что иногда обе иммунологические системы действуют в совокупности. После окисления оксигеназной системой ксенобиотика его окисленная форма связывается с определенным белком. Образовавшийся коньюгат приобретает антигенные свойства и начинает вызывать образование антител. Роль коньюгазы опять-таки выполняет цитохром Р-450. Получается, что ксенобиотик, попадая в организм животного, индуцирует не только свое окисление, но и биосинтез соответствующих антител.

С помощью оксигеназной системы окисляются не только экзогенные ксенобиотики, но и ряд эндогенных (внутренних), образующихся в организме: стероидные гормоны, жирные кислоты, простагландины и др.

В печени млекопитающих существует еще одна система, помогающая им убирать из организма ксенобиотики. Это присоединение, или конъюгация, к различного рода лекарствам, ядам, наркотикам и другим соединениям глютатиона, в результате чего ксенобиотики обезвреживаются, а затем и выводятся из организма.

Однако в действии обезвреживающих систем бывают и осечки. Известны случаи, когда эти системы, стремясь обезвредить какое-нибудь токсическое вещество, превращают его в канцероген, т. е. в соединение, способное вызывать злокачественную опухоль.

Все, что сказано, относится к системам обезвреживания ксенобиотиков в организмах млекопитающих, где эти процессы усиленно исследовались и продолжают исследоваться, А как обстоит дело у растений? Вопрос далеко не праздный, поскольку именно растениям приходится в основном принимать на себя тот бесконечный поток чужеродных веществ, который сам человек и созданная им промышленность обрушивают на их поверхность. К сожалению, такие исследования если и проводились, то в крайне ограниченном количестве. А те сведения, которыми мы располагаем, в основном относятся к способности растительных тканей превращать гербициды (главным образом 2,4-дихлорфеиолуксусную кислоту), а также некоторые инсектициды. Даже знаменитый ДДТ в этом отношении до сих пор остается почти неисследованным, более того, существует мнение, что растения не в состоянии ею метаболизировать.

Однако те ограниченные сведения, которые все же имеются в литературе, позволяют заключить, что и у растений имеются системы детоксикации ксенобиотиков, напоминающие по своим свойствам оксигеназную систему микросом печени млекопитающих. В составе растений, принадлежащих к 20 видам, обнаружен цитохром Р-450, спектральные характеристики которого удивительно похожи на спектры соответствующих цитохромов из печени млекопитающих. В микросомах более чем 20 видов растений обнаружено наличие оксигеназной активности, способной превращать ряд ксенобиотиков. Эта ферментная система зависит от наличия липидного кофактора и подавляется теми же ингибиторами, что и оксигеназы из микросом печени. У растений присутствует также ряд ферментов, ответственных за присоединение к гербицидам глютатиона. Предполагают, что такой механизм обезвреживания может объяснить нечувствительность некоторых растений к гербицидам.

Получение прямых доказательств участия монооксигеназной системы в способности растений детоксицировать экзогенные и эндогенные ксенобиотики и тем самым поддерживать свой химический гомеостаз, нуждается в более пристальном внимании фитоиммунологов, чем то, которое до сих пор ему уделялось. Не исключено, что результаты этих исследований покажут, что растения на нашей планете функционируют не только как «зеленые легкие», образуя кислород в процессе фотосинтеза, но и как «зеленая печень», осуществляющая метаболизм ксенобиотиков и защищающая биосферу от загрязнения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Предмет ксенобиологии, проблемы и задачи, связь с другими науками

Ксенобиотиками называют чужеродные, ранее не встречавшиеся в организме органические и неорганические соединения. К таким веществам относятся, например, лекарственные препараты, пестициды, промышленные яды, отходы производств, пищевые добавки, косметические средства и пр. Так как в тканях обычно в следовых количествах присутствуют многие неорганические элементы, биологическая функция которых неизвестна, поэтому неорганические вещества можно относить к ксенобиотикам только в том случае, если они не являются необходимыми для метаболических процессов.

Живой организм - это открытая система. Среди веществ, поступающих из окружающей среды в организм, различают естественный поток (питательные вещества) и поток веществ природного и синтетического происхождения, которые не входят в состав данного организма. Эти потоки взаимодействуют на всех уровнях организма (молекулярном, клеточном, органном). Избыток токсических чужеродных соединений (ксенобиотиков) вызывает замедление или остановку процессов роста, развития, размножения. Для поддержания гомеостаза в организме существуют регуляторные механизмы.

Ксенобиология изучает закономерности и пути поступления, выведения, распространения, превращения чужеродных химических соединений в живом организме и механизмы вызываемых ими биологических реакций.

Ксенобиология подразделяется на более узкие области - ксенобиофизику, ксенобиохимию, ксенофизиологию и др. Задачами ксенобиофизики являются изучение процессов взаимодействия экзогенных ксенобиотиков с транспортными системами организма, с различными клеточными структурами, в первую очередь с плазмолеммой, и механизмов поступления ксенобиотиков.

Предметом изучения ксенобиохимии является метаболизм ксенобиотиков в организме. Это направление ксенобиологии включает ряд разделов биологической, органической и аналитической химии, фармакологии, токсикологии и других наук. В задачу статической ксенобиохимии входит установление структуры молекул метаболитов ксенобиотиков, образующихся в организме, изучение их распространения, локализации в организмах и тканях. Динамическая ксенобиохимия исследует механизмы превращения ксенобиотиков в организме, структуру и каталитические свойства фермен­тов, участвующих в этих превращениях.

Ксенофизиология изучает процессы жизнедеятельности, и функции живых организмов на всем протяжении их развития в условиях действия ксенобиотиков. Ксенофитофизиология изучает особенности поступления и выделения, специфику процессов биотрансформации и аккумулирования ксенобиотиков в растительном организме.

Ксенобиология связана с биотехнологией, которая использует принципы метаболизма ксенобиотиков, в частности ферментный катализ, в синтезе органических веществ. Связь ксенобиологии с медициной обеспечивает безопасность лечения в результате изучения механизма действия и метаболизма новых лекарственных препаратов.

Возрастание актуальности проблем, рассматриваемых в ксенобиологии, обусловлено быстрым увеличением количества синтетических соединений, вовлекаемых в круговорот веществ в природе. Среди ксенобиотиков существует ряд полезных веществ, необходимых медицине, растениеводству, животноводству и т. д. Поэтому одной из задач ксенобиологии явля­ется разработка приемов и подходов для создания системы определения биологической активности ксенобиотиков.

Виды ксенобиотиков, их классификация по степени опасности и токсичности

Выделяют следующие типы веществ, вызывающих глобальное химическое загрязнение биосферы:

Газообразные вещества;

Тяжелые металлы;

Удобрения и биогенные элементы;

Органические соединения;

Радиоактивные вещества (радионуклиды) - предмет изучения радиобиологии.

Многие из ксенобиотиков и поллютантов являются сильнодействующими ядовитыми веществами.

В самом широком смысле яды - это химические вещества экзогенного происхождения (синтетические и природные), которые после проникновения в организм вызывают структурные и функциональные изменения, сопровождающиеся развитием характерных патологических состояний.

В зависимости от источника происхождения и практического применения токсические вещества (яды) подразделяют на следующие группы:

Промышленные яды: органические растворители (дихлорэтан, тетрахлорметан, ацетон и др.), вещества, применяемые в качестве топлива (метан, пропан, бутан), красители (анилин и его производные), фреоны, химические реагенты, полупродукты органического синтеза и др.;

Химические удобрения и средства защиты растений, в том числе пестициды;

Лекарственные средства и полупродукты фармацевтической промышленности;

Бытовые химикаты, используемые в качестве инсектицидов, красителей, лаков, парфюмерно-косметических средств, пищевых добавок, анти-оксидантов;

Растительные и животные яды;

Боевые отравляющие вещества.

В зависимости от преимущественного поражения соответствующих органов и тканей человека яды подразделяют на следующие категории: сердечные яды, нервные яды, печеночные яды почечные яды, кровяные (гемические) яды, желудочно-кишечные яды, легочные яды, яды, поражающие иммунную систему, яды, поражающие кожу.

Токсичность - мера несовместимости вещества с жизнью, величина, обратная абсолютному значению среднесмертельной дозы или концентрации.

Величины LC50 или LD 5 o - это соответственно концентрация или доза вещества, вызывающая половинное подавление регистрируемой реакции (например, гибель 50 % организмов).

Опасность чужеродного вещества - вероятность появления вредных для здоровья эффектов в реальных условиях их производства и применения.

Вредные вещества, с которыми контактирует человек, по степени опасности (токсичности) подразделяют на четыре класса:

I.чрезвычайно опасные (чрезвычайно токсичные);

II.высокоопасные (высокотоксичные);

III.умеренно опасные (умеренно токсичные);

IV.низкоопасные (низкотоксичные).

Критерии классификации ксенобиотиков по степени их токсичности:

Значение величин LD 5 o или LC50;

Пути поступления (ингаляционно, через кожу);

Время воздействия;

Свойство разрушаться в окружающей среде или претерпевать превращения в живых организмах (биотрансформация).

Помимо токсичности и опасности всякое влияние ксенобиотика на объект можно охарактеризовать по некоторым особенностям его биологического действия:

По типу биологического воздействия на мишень

По показателям LD 5 o или LC50;

По видам токсичности и опасности

По избирательности действия ксенобиотиков (вещества могут быть токсичными для одних организмов и нетоксичными - для других);

По концентрационным пределам (пороговым значениям) токсического и/или опасного воздействия;

По характеру фармакологического действия (снотворные, нейролептики, гормональные и т. д.).


Похожая информация.


В зависимости от химической природы соединений и их воздействия на организм человека все загрязняющие соединения можно разбить на девять групп.

К первой группе относят радионуклиды, которые могут попасть в пище­вые продукты случайно или в результате специальной обработки. Особенно остро встала проблема загрязнения пищевых продуктов после аварии на Чер­нобыльской атомной станции.

Ко второй группе относят тяжелые металлы и другие химические эле­менты, которые в концентрациях выше физиологической потребности вызы­вают токсическое или канцерогенное воздействие на организм человека. Ос новную массу загрязняющих тяжелых металлов и соединений составляют: фтор, мышьяк и алюминий, а также хром, кадмий, никель, олово, медь, свинец, цинк, сурьма и ртуть.

К третьей группе относят микотоксины - соединения, накапливающиеся в результате жизнедеятельности плесневых грибов. Как правило, грибы раз­виваются на поверхности пищевых продуктов, а продукты их метаболизма могут проникать и вовнутрь. На сегодня известно свыше 100 микотоксинов, но наиболее известны афлатоксины и патулин.

В четвертую группу включают пестициды и гербициды. Эти соединения используются для защиты растений в сельском хозяйстве и попадают чаще всего в пищевые продукты растительного происхождения. В настоящее время известно более 300 наименований пестицидов и гербицидов.

В пятую группу относят нитраты, нитриты и их производные нитрозамины. Соединения азотной и азотистой кислот в нашем организме не метаболируются, поэтому их поступление приводит к нарушению биохимических процессов в организме в виде токсических и канцерогенных проявлений.

К шестой группе загрязняющих веществ относят детергенты (моющие средства). При переработке пищевых продуктов используют оборудование из нержавеющей стали. После каждой рабочей смены оборудование (особенно в молочной и консервной промышленности) моют с применением каустической соды или других моющих средств. При плохом ополаскивании оборудования первые порции пищевой продукции будут содержать детергенты.

В седьмую группу загрязняющих веществ относят антибиотики, анти­микробные вещества и успокаивающие средства. Эти соединения, поступая с продуктами питания, воздействуют на микроорганизмы толстого кишечника и способствуют развитию у человека дисбактериоза, а также привыканию пато­генных микроорганизмов к этим антибиотикам.

К восьмой группе относят антиоксиданты и консерванты. Эти вещества используют для продления срока хранения пищевых продуктов, за счет бло­кирования химических и биохимических процессов. При поступлении в орга низм человека данные соединения блокируют отдельные биохимические про­цессы, либо воздействуют на бифидобактерии желудочно-кишечного тракта человека. Это способствует развитию дисбактериоза.

В девятую группу загрязняющих веществ входят соединения, образую­щиеся при длительном хранении или в результате высокотемпературной об­работки пищевых продуктов. К ним относят продукты химического разруше­ния Сахаров, жиров, аминокислот и продукты реакций между ними. Эти про­стые и комплексные соединения организм человека не может метаболировать, что приводит к накоплению этих соединений в печени человека, а возможно и к нарушению биохимических процессов в организме.

Посещение супермаркета убедит кого угодно, что много добавок исполь­зуется для окрашивания, предохранения от порчи или иного «улучшения» пищевых продуктов, медикаментов и косметических средств. Только к пищевым продуктам добавляют более 2000 самых разнообразных веществ. Эти добавки делятся на три основные группы. Первая из них включает естественные вещества, такие, как сахар, соль и витамин С. Ко второй группе относятся лабораторные аналоги природных веществ; таков, например, ванилин-главный ароматический компонент экстракта из натуральных ванильных бобов. Есть также вещества полностью синтетические или «изобретенные» в лаборатории, среди них бутилгидроксианизол, этилендиаминтетрауксусная кислота (ЭДТА) и сахарин.

Добавки применяются, по многим причинам; все эти причины понятны, однако некоторые из них более оправданны, чем другие. Многие вещества добавляют, чтобы сделать продукт более привлекательным для потребителей. В медикаменты вводят примеси для маскировки горечи или иного неприятного вкуса. Пищевые продукты иногда подкрашивают, чтобы можно было догадаться об их вкусе по внешнему виду (желтый цвет-для лимонных конфет, розовый-для земляничного мороженого). Однако красители и ароматизаторы используются также для замены дорогих компонентов, не включаемых в косметические средства или пищевые продукты. Например, дорогостоящий настоящий фруктовый сок часто отсутствует в искусственно окрашенных и ароматизированных безалкогольных напитках.

Современные методы торговли продовольствием потребовали при­менения определенных добавок. Химикаты, уничтожающие плесень и со­храняющие пищу мягкой, позволяют перевозить хлебопекарные изделия и конфеты на значительные расстояния, и они еще долгое время остаются свежими на вкус. Антиоксиданты. предотвращающие прогоркание жиров, позволяют производить такие полуфабрикаты, как упакованные смеси для кек­сов. Фактически целые группы таких продуктов, в том числе специальных диетических, вероятно, не могли бы существовать без добавок, которые придают им вкус, цвет и способность длительно сохраняться. В некоторых случаях добавки позволяют производить более разнообразную пищу. Некоторые продукты без этого нельзя было бы консервировать, замораживать или расфасовывать для перевозки или для продажи вне сезона.

Коммерческие интересы обуславливают поиск и применение пищевых добавок, к которым относятся и ароматизаторы. Есть они и в натуральных продуктах, но в очень низких концентрациях. Экстракты, эфирные масла, эссенциальные масла и другие соединения, используемые для улучшения вкуса продуктов питания, эксперты ВОЗ делят на 4 группы:

Искусственные, непопадающие в пищу естественным путём;

Натуральные субстанции, обычно не используемые в пищу, их производные и эквивалентно идентичные естественным продуктам ароматизаторы;

Травы, специи и их производные, эквивалентно идентичные природным ароматизаторам;

Натуральные ароматические вещества, полученные из продуктов растениеводства и животноводства, употребляемые обычно в пищу, и их синтетические эквиваленты.

Многие пищевые добавки содержат канцерогенные контаминанты. Некоторые из них используются при обработке пищевых продуктов, например, органическими растворителями обеззараживают рыбу, экстрагируют жиры и масла, производят декофеинизацию кофе и чая.

5. Аккумуляция ксенобиотиков в продуктах растительного и животного происхождения:

а - нитратов и органических аминов;

б - тяжёлых металлов и их соединений (ртуть, свинец, кадмий);

в -радионуклидов естественного и антропогенного происхождения;

Азот - составная часть жизненно важных для растений, а также для животных организмов соединении, например белков. В растениях азот поступает из почвы, а затем через продовольственные и кормовые культуры попадает в организмы животных и человека. Ныне сельскохозяйственные культуры чуть ли не полностью получают минеральный азот из химических удобрений, так как некоторых органических удобрений не хватает для обедненных азотом почв.

Особенно резко проявляется отрицательное действие удобрений и ядохимикатов при выращивании овощей в закрытом грунте. Это происходит потому, что в теплицах вредные вещества не могут беспрепятственно испаряться и уноситься потоками воздуха. После испарения они оседают на растения. Растения способны накапливать в себе практически все вредные вещества. Вот почему особенно опасна сельскохозяйственная продукция, выращиваемая вблизи промышленных предприятий и крупных автодорог.

Уже в процессе выращивания растений, некоторые их виды могут накапливать нитраты. К числу растений, особенно склонных к накапливанию нитратов, относятся сахарная свекла (особенно листья), шпинат, морковь (корнеплоды), салат и капуста. Накопление азота может происходить и при нехватке серы в почве. Недостаток серосодержащих аминокислот препятствует синтезу белков, а тем самым и синтезу фермента нитратредуктазы. Таким образом, нитраты сохраняются в тканях растений и не метаболируются.

Шпинат и морковь являются важнейшим компонентом детского питания, а детский организм особенно чувствительно реагирует на действие нитратов. Основная масса нитратов попадает в организм человека с консервантами и свежими овощами (40-80% суточного количества нитратов), водой. Загрязнённая питьевая вода вызывает 70-80% всех имеющихся заболеваний, которые на 30% сокращают продолжительность жизни человека. По данным ВОЗ по этой причине заболевает более 2 млрд. человек на Земле, из которых 3,5 млн. умирает (90% из них составляют дети младше 5 лет).

В то время как свинец попадает в организм человека по цепи питания от растительной пищи, ртуть в основном накапливается в организмах рыб и моллюсков, а также в печени и почках млекопитающих. В 1970-е годы, когда ртутьсодержащие препараты широко использовались при протравливании семян, были зарегистрированы несчастные случаи при работе с протравленным семенным материалом. Кадмий попадает в организм человека с растительной, мясной (потроха) пищей, а также съедобными грибами. Допустимая норма для человека составляет 0,5 мг в неделю.

К антропогенным ксенобитикам относятся пестициды, удобрения, лекарственные препараты (антибиотики, сульфаниламиды, регуляторы роста), кормовые добавки, пищевые добавки (антиоксиданты, консерванты, красители, стабилизаторы, эмульгаторы, затвердители, ароматизаторы).

Большую группу опасных загрязнений продуктов питания составляют радионуклиды. В растительной пище особенно часто можно встретить Sr-80, Sr-90,1-131, Cs-137. Ва-140, К-40, С-14 н Н-3 (тритий). Перечисленные выше радионуклиды вступают в прочное взаимодействие с органическими соединениями в клетках. Среди естественных радионуклидов первенствующая роль (около 90% от суммарной активности) принадлежит К-40, поступающий в организм с растительной пищей или с молоком.

Наиболее опасными радионуклидами антропогенного происхождения являются 1-131, Cs-137 и Sr-90. После аварии атомного реактора в Чернобыле (апрель 1986 года) прежде всего было обнаружено сильное загрязнение окружающей среды радионуклидом 1-131. Радиоактивный йод попадает в организм человека вместе со свежим молоком, свежими овощами и яйцами. Попавший в организм йод накапливается в щитовидной железе, что приводит к росту злокачественных новообразований.

6. Влияние различных видов технологической обработки и упаковочного материала:

а) промышленное изготовление пищевых продуктов;

б) кулинарное приготовление пищи;

в) консервирование продуктов питания;

г) ксенобиотики упаковочного материала.

При промышленном изготовлении пищевых продуктов в основные продукты вносят различные добавки, а при кулинарных процессах (жарение, варка, сушка и др.) происходят химические превращения веществ, в ходе которых образуются новые соединения.

Изменение свойств пищевых продуктов происходит и при добавлении стабилизаторов, которые должны обеспечить продукту большую устойчивость. При изготовлении сгущенного молока его свертывание предотвращают добавкой гидрокарбоната натрия, динатрийфосфата и тринатрийцитрата. Эти стабилизирующие продукты препятствуют бактериальным процессам свертывания молока, однако «возраст» молока, после введения консервантов установить практически невозможно.

При длительном нагревании жиров образуются токсичные вещества, вызывающие раздражение пищеварительного тракта.

При копчении и поджаривании мяса оно постоянно находится в дыме над продуктами сгорания, что придает пище своеобразный аромат. Устойчивость мяса после копчения обусловливается присутствием веществ фенольного

характера. При копчении образуются и полициклические углеводороды, которые вместе с дымом оседают на мясе. При холодном копчении в дыме содержание бензопирена всегда ниже, чем при горячем копчении (60-120°С). Среднее содержание бензопирена в копченостях составляет 2-8 мкг/кг. При обработке мяса и рыбы, а также при изготовлении сыра могут образовываться нитрозамины. Ежедневно в организм с пищей поступает 0,1-1 мкг нитрозаминов.

Вопросы консервирования и упаковки продуктов, все больше выходят на передний план с ростом численности населения городов, поскольку отдаленность потребителей от мест производства продуктов заставляет задумываться о сохранности и возможностях доставки продуктов. Распространенным консервирующим агентом служит сложный эфир

гидроксибензойной кислоты. Чаще всего применяют метиловый и пропиловый эфиры, которые обладают бактерицидными свойствами.

При консервировании продуктов питания, ни в коем случае нельзя использовать антибиотики. Если добавка антибиотиков и не принесет прямого ущерба здоровью, то они создадут благоприятную среду для выращивания различных видов устойчивых к антибиотикам микроорганизмов. Устойчивость к антибиотику может передаваться от одного вида бактерий к другому, как это имеет место при так называемой устойчивости к антибиотику, обусловленной плазмидами; при этом возможно также, несмотря на все попытки стерилизовать продукты питания, появление устойчивой патогенной микрофлоры, что сужает возможности применения антибиотиков для лечения человека.

Во многих странах для стерилизации пищи и консервирования используют гамма-излучение.. Для стерилизации, например, цыпленка требуется доза облучения 300 000 рад. При облучении в продуктах не образуется никаких радионуклидов в обнаруживаемых количествах, и метод можно считать совершенно безопасным. Правда, необходимо учитывать, что при облучении происходит некоторое уменьшение количества витаминов. Кроме того, гамма-излучение вызывает образование высокоактивных ОН -радикалов, которые реагируют с ферментами и нуклеиновыми кислотами.

Загрязнения пищевых продуктов могут быть вызваны не только при консервировании, стерилизации и других методах обеспечения их сохранности. Вредные вещества могут содержаться и в упаковочном материале. К ним относятся пластификаторы и поливинилхлориды пластмасс, которые являются канцерогенами для человека. Упаковочный материал из бумаги и картона, а также импрегнированный картон содержат нитриты и нитраты, способные переходить в пищевые продукты. Из упаковочного материала соли переходят в пищевые продукты. В мясных продуктах, содержащих естественные амины и амиды, особенно при жарении и варке, возникает опасность образования нитрозоаминов. В упаковочном материале помимо перечисленных могут находиться и другие вредные примеси, например, фунгициды в бумаге и свинец в металлах и глазурованной керамике.

7. Токсины природного происхождения в растительной пище.

Токсичные для человека вещества попадают в продукты питания не только за счет микроорганизмов или в результате антропогенной деятельности, гораздо чаще их вырабатывают сами растения. Так, например, зеленые бобы содержат токсичные белки, которые могут вызвать у человека кровавый понос и судороги.

Стручковые растения часто содержат лектины, которые агглютинируют эритроциты. Сахарная свекла, спаржа, шпинат красная свекла содержат сапонины - вещества, относящиеся к гликозидам. При проникновении в кровь сапонины могут реагировать с мембранами эритроцитов и сделать их проницаемыми для гемоглобина (это явление носит название гемолиза). Практически все виды капусты также содержат гликозиды.

Ревень, шпинат, сельдерей и свекла содержат щавелевую кислоту и антрахинон. Эти соединения при неумеренном употреблении растений в пищу могут вызвать заболевания почек и коллапс кровообращения.

Эфирные масла из цедры лимонов и апельсинов могут вызывать головную боль, сильную заторможенность и воспаление кожи. Кроме того, эти масла обладают канцерогенным действием. Поэтому рекомендуется очень ограниченно пользоваться этими маслами в качестве пищевых приправ и при регулировании пищеварения. Мятное масло, главным компонентом которого является ментол, в больших количествах может оказывать дурманящее действие, вызывать чувство холода и сердцебиение.

Теофиллин и кофеин из чая и кофе действуют на центральную нервную систему, поднимая настроение, вызывая легкую эйфорию. На большинство людей кофе оказывает более сильное действие, чем чай. В небольших количествах кофеин усиливает кровообращение и оживляет умственную деятельность. В больших дозах он вызывает возбуждение, бессонницу и сердцебиение, возможна также некоторая аритмия сердечной деятельности. Кофеин в чистом виде в дозах не более 100 мг (это соответствует одной чашке кофе) применяют в качестве терапевтического средства при головной боли и мигрени. Повышенными дозами кофеина считают 1 г и выше, летальная доза составляет около 10 г.

Приведёные примеры говорят о том, что природным токсинам следует уделять особое внимание, так как теперь к их действию на человека добавляется и действие токсинов антропогенного происхождения.

Лекарственные средства или лекарства получают путем химического синтеза, некоторые лекарства получают из сырья животного, растительного или минерального происхождения. Число отдельных лекарственных веществ и их комбинаций, используемых в медицинской практике, достигает нескольких тысяч. Процесс создания лекарственных препаратов достаточно длительный, сложный, требующий значительных финансовых затрат. В процессе изыскания и внедрения новых лекарств особое внимание уделяется проблеме безопасности их применения. Новое лекарственное средство испытывается на животных, а потом уже при положительных эффектах - на человеке.

Современная медицина располагает самыми различными лекарственными средствами, которые можно разделить между собой на близкие по свойствам группы, например, транквилизаторы, мочегонные, противовоспалительные, противоаллергические, болеутоляющие, спазмолитики. Группы различаются как по количеству входящих в них препаратов, так и по значимости в медицинской практике. Действие лекарственных препаратов на организм человека зависит от многих факторов и прежде всего от дозы. Это так называемые терапевтические дозы. Следует учитывать, что чувствительность к лекарствам существенно меняется в зависимости от возраста. Эффект лекарств во многом обусловлен и способом их применения. От этого зависит прежде всего скорость и продолжительность действия лекарства. Для каждого лекарственного вещества характерна определенная продолжительность действия, соответствующая времени его циркуляции в организме. Если лекарство принимается чаще, чем прописано врачом, резко возрастает опасность различных осложнений, в том числе и опасных для жизни отравлений. И наоборот, более редкие, чем назначено, приемы приводят к затягиванию болезни. Для препаратов имеет также значение порядок приема препарата в зависимости от пищевого режима. В большинстве случаев пища является естественным барьером, ограничивающим процесс всасывания лекарства в желудочно-кишечном тракте. Действие лекарств зависит также от общего состояния организма и сопутствующих заболеваний. Особенно очевидна зависимость действия лекарств от функционального состояния печени, почек и сердечно-сосудистой системы. При тяжелых заболеваниях этих органов токсичность препаратов значительно усиливается. Существуют и другие факторы, влияющие на лечебный эффект (биоритмы, курение, прием спиртных напитков, физические нагрузки, психическое состояние, наследственные особенности), учесть которые может только врач.

Ксенобиотики - это чужеродные вещества, попадающие в организм человека и животных извне, претерпевают в организме различную биотрансформацию: окисление, восстановление, гидролиз, конъюгацию и другие процессы с участием фермент систем. Так, например, цитохромы Р450 в печени осуществляют гидроксилирование чуждых организму липофильных соединений, образующихся в качестве побочных продуктов или попадающих в организм извне. Образование гидроксогрупп повышает гидрофильность этих веществ и облегчает их последующий вывод из организма.

Список литературных источников

  • 1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия: Учебник.- М.: Медицина, 1990.- 752 с.
  • 2. Биохимия.Учебник для вузов под редакцией Е.С. Северина.- М.:ГЭОТАРМЕД, 2004.- 784 с
  • 3. Кнорре Д.Г., Мызина С.Д. Биологическая химия: Учеб, для хим., биол. и мед. спец, вузов.- 3-е изд., испр. - М.: Высш. шк. 2003,- 479 с.
  • 4. Уайт. А, Хендлер Ф. ,Смит. Э, Хилл. Р, Леман И.Основы биохимии.т. 1.- М.; Мир, 1981,- 675 с.
  • 5. Ленинджер А. Основы биохимии (в 3-х томах).- М.: Мир,- 1985.
  • 6. Николаев А.Н. Биологическая химия.- М.: Высш. шк.,- 1989
  • 7. Строев Т.Г. Биологическая химия.- М.: Высш. шк.,- 1986
  • 8. Митякина Ю.А. Биохимия: Учеб. Пособие.- М.Издательство РИОР, 2005.-11 Зс
  • 9. Биология. В 2 кн. Кн. 1: Учебник для медицинских спец, вузов / В.Н. Ярыгин, В.И. Васильева, И.Н. Вилков, В.В. Синелыцикова; Под ред. В.Н. Ярыгина.- 5-е изд. испр. и доп.- М.: Высш. шк. 2003.- 432 с.

Сейчас, наверное, большинство из читателей подумало: -«Что это за словечко такое научное?! Наверное что-нибудь совсем недавно появившееся…то, что нам не знакомо и с чем мы ещё не имели дело!» Но, нет, спешу Вас расстроить — с ксенобиотиками знаком каждый из нас, просто каждый знает их под несколько другими названиями! Вот, например, несколько более привычных для нас названий, входящих в эту группу веществ — тяжёлые металлы, нитраты, пестициды, нефтепродукты и др. Знаю, что многих я сейчас шокирую, но попробуйте отгадать — какой ксенобиотик является самым распространённым за последние сто лет?!

Правильный ответ — лекарственные препараты. Да-да, не удивляйтесь так сильно, абсолютно все лекарственные препараты, как все вышеперечисленные ядовитые вещества являются чужеродными для нашего организма, т.е. ксенобиотиками. Термин «ксенобиотик» происходит от 2 греческих слов «xenos» и «bios», которые обозначают «чужеродность для жизни». Чужеродность тех или иных веществ в двух словах можно объяснить изменениями или нарушениями внутренних процессов или компонентов на различных уровнях (молекулярный, клеточный, организменный). Впоследствии все эти изменения могут вызвать и вызывают(это лишь вопрос времени) аллергические реакции, родовые мутации, редкие и очень специфические заболевания и многое другое!

Предлагаю рассмотреть основные группы ксенобиотиков на предмет большей опасности для человека:

1. Физические ксенобиотики:

К этой группе относят такие факторы, как шум, вибрация, радиация, различные виды излучений. Не спешите облегчённо выдыхать — мол, меня ничего из этого не касается, т.к. ни шума, ни вибраций, ни радиации у меня в жизни нет! Всё это есть абсолютно в каждом доме! Вот вам самый простой пример — беспроводная сеть Wi-Fi. Не призываю сейчас отказаться от использования беспроводных технологий, но будьте благоразумны и «не спите на Wi-Fi адаптере»…! Или вот ещё популярное в наш век изобретение — микроволновая печь! О ней и о её воздействии на организм мы даже написали, обязательно почитайте!

Понятно, что вся эта группа имеет не природное происхождение, а искусственно создана человеком. Ещё одна отличительная особенность этой группы — это то, что все эти ксенобиотики оказывают на человека внешнее воздействие, т.е проникают в человеческий организм посредством контакта с поверхностью тела.

2. Биологические ксенобиотики:

Эта группа ксенобиотиков имеет природное происхождение, даже несмотря на то, что многие бактерии и вирусы мутируют под воздействием последствий человеческой деятельности! Биологические ксенобиотики попадают в человека чаще всего либо через лёгкие, либо через желудочно-кишечный тракт.

3. Химические ксенобиотики:

К их числу относятся:

1. продукты хозяйственной деятельности человека (промышленность и с\х);

2. вещества бытовой химии;

3. лекарственные препараты;

Очень обширная группа ксенобиотиков и достаточно страшная с точки зрения мнимой безопасности всех входящих в неё веществ!

— Из перечисленного, наверное, только первое (продукты хозяйственной деятельности) мало-мальски вызывает обеспокоенность у широкой публики. Да и то, информации на этот счёт крайне мало и она весьма противоречива! Дело в том, что последние несколько десятков лет исследования в области сельского хозяйства в нашей стране практически не проводятся, а 95% удобрений и подкормок — это импорт! Поэтому едим мы с Вами зелёненькие огурчики с красненькими помидорчиками и знать не знаем, что на самом деле попадает нам в желудок…

И только редкие статейки в газетах о том, что в очередной раз где-нибудь под Волгоградом закрыли фермерское хозяйство китайских овощеводов, которые выращивали овощи в теплицах, используя тонны непонятных китайских удобрений, и после контрольного анализа их продукции в ней обнаружилось превышение содержания нитратов, инсектицидов, канцерогенов и других страшных веществ в десятки раз, свидетельствуют о том, что «не всё полезно, что в рот полезло…» Одна из подобных статей опубликована в нашей группе в Контакте. Не забудьте подписаться на нашу группу!:)

— К сожалению большинство из нас совершенно не задумывается над опасностью, которая таится в следующей подгруппе химических ксенобиотиков — веществах бытовой химии.

И одни из самых страшных представителей этих ксенобиотиков — это средства для мытья посуды! Сколько бы Вы не полоскали тарелки и столовые приборы после использования этих средств, но полностью смыть их всё-равно не удастся! И очень скоро они окажутся вместе с Вашей едой в Вашей ложке, а затем и Вашем желудке…

Редко, кто обращает внимание на состав того или иного моющего средства и очень напрасно! Может быть хоть у кого-то отпало желание покупать эту «химическую фабрику». Ну вот послушайте, например, лишь некоторые ингредиенты — ПАВ, фенолы, крезолы, нефтяные дистилляты, триклозан, аммиак, фтолат, формальдегид и прочее. Расписывать вред каждого сейчас не буду, но поверьте на слово — ничего хорошего от этих химикатов с Вами не случится! Кстати, а посуда прекрасно отмывается содой или горчичным порошком!:)

Вот мы и добрались до третьей, так любимой многими, подгруппы — лекарственные препараты. Знаю, что встречу неодобрение со стороны многих, кто доверяет своё здоровье «волшебной таблетке», но тем не менее послушайте. Да, и ещё, аргументы вроде таких: «Я принял лекарство и всё прошло» здесь не совсем уместны и вот почему: фармацевтика — это огромная индустрия в которой работают миллионы людей, чуть ли не каждый день появляется очередное новое лекарство с чудным названием и непонятным большинству из нас содержанием. Проследить действие вновь создаваемых химических соединений на человека за его непродолжительную жизнь трудно. А оценить степень токсичности веществ, которые путём метаболических процессов образуются из этой «химии» в организме человека практически невозможно!

Эта группа ксенобиотиков, на мой взгляд, является наиболее страшной и опасной по причине кажущейся полезности для человека и активно продвигаемой необходимости использования всего вышеперечисленного!

Самое важное!

В качестве заключения хотелось бы сказать, что колоссальное количество жизненной энергии наш организм тратит на обезвреживание и выведение случайно или намеренно попавших в организм ксенобиотиков. Я не понимаю, для чего делать и без того короткую человеческую жизнь ещё короче?!