Изменение лабильности при различных функциональных состояниях. Общие понятие физиологии. Основные свойства возбудимых тканей

тема

«Возбудимость и её измерение, лабильности»

Волгоград – 2018

Содержание:

    Возбудимость и её измерение, лабильности.

    Свойства биологических мембран.

    Мембранный потенциал покоя и действия.

4. Фазы возбудимости при возбуждении .

1 Возбудимость и её измерение, лабильность

Возбудимость

Основным свойством живых клеток является раздражимость, т. е. их способность реагировать изменением обмена веществ в ответ на действие раздражителей. Возбудимость - свойство клеток отвечать на раздражение возбуждением. К возбудимым относят нервные, мышечные и некоторые секреторные клетки. Возбуждение - ответ ткани на ее раздражение, проявляющийся в специфической для нее функции (проведение возбуждения нервной тканью, сокращение мышцы, секреция железы) и неспецифических реакциях (генерация потенциала действия, метаболические изменения). Одним из важных свойств живых клеток является их электрическая возбудимость, т.е. способность возбуждаться в ответ на действие электрического тока. Высокая чувствительность возбудимых тканей к действию слабого электрического тока впервые была продемонстрирована Гальвани в опытах на нервно-мышечном препарате задних лапок лягушки. Если к нервно-мышечному препарату лягушки приложить две соединенные между собой пластинки из различных металлов, например медь-цинк, таким образом, что бы одна пластинка касалась мышцы, а другая - нерва, то мышца будет сокращаться (первый опыт Гальвани).Детальный анализ результатов опытов Гальвани, проведенный А. Вольта, позволил сделать другое заключение: электрический ток возникает не в живых клетках, а в месте контакта разнородных металлов с электролитом, поскольку тканевые жидкости представляют собой раствор солей. В результате своих исследований А.Вольта создал устройство, получившее название «вольтов столб» - набор по следовательно чередующихся цинковых и серебряных пластинок, раз деленных бумагой, смоченной солевым раствором. В доказательство справедливости своей точки зрения Гальвани предложил другой опыт: набрасывать на мышцу дистальный отрезок нерва, который иннервирует эту мышцу, при этом мышца также сокращалась (второй опыт Гальвани, или опыт без металла). Отсутствие металлических про водников при проведении опыта позволило Гальвани подтвердить свою точку зрения и развить представления о «животном электричестве», т. е. электрических явлениях, возникающих в живых клетках. Окончательное доказательство существования электрических явлений в живых тканях было получено в опыте «вторичного тетануса» Маттеуччи, в котором один нервно-мышечный препарат возбуждался током, а биотоки сокращающейся мышцы раздражал нерв второго нервно-мышечного препарата.В конце XIX века благодаря работам Л. Германа, Э. Дюбуа-Раймона, Ю. Бернштейна стало очевидно, что электрические явления, которые возникают в возбудимых тканях, обусловлены электрическими свойствами клеточных .

Измерение возбудимости

Электрический ток широко используется в экспериментальной физиологии при изучении характеристик возбудимых тканей, в клинической практике для диагностики и лечебного воздействия, поэтому необходимо рассмотреть механизмы воздействия электри­ческого тока на возбудимые ткани. Реакция возбудимой ткани за­висит от формы тока (постоянный, переменный или импульсный), продолжительности действия тока, крутизны нарастания (изменения) амплитуды тока.

Эффект воздействия определяется не только абсолютным значе­нием тока, но и плотностью тока под стимулирующим электродом. Плотность тока определяется отношением величины тока, протека­ющего по цепи, к величине площади электрода, поэтому при монополярном раздражении площадь активного электрода всегда мень­ше пассивного.

Постоянный ток. При кратковременном пропускании подпорогового постоянного электрического тока изменяется возбудимость ткани под стимулирующими электродами. Микроэлектродные исследования показали, что под катодом происходит деполяризация клеточной мем­браны, под анодом-гиперполяризация. В первом случае будет уменьшаться разность между критическим потенциалом и мем­бранным потенциалом, т. е. возбудимость ткани под катодом увели­чивается. Под анодом происходят противоположные явления, т. е. возбудимость уменьшается. Если отвечает пас­сивным сдвигом потенциала, то говорят об электротонических сдви­гах, или электротоне. При кратковременных электротонических сдви­гах значение критического потенциала не изменяется.

Поскольку практически у всех возбудимых клеток длина клетки превышает ее диаметр, электротонические потенциалы распределя­ются неравномерно. В точке локализации стимулирующего электрода сдвиг потенциала происходит очень быстро и временные параметры определяются величиной емкости мембраны. В удаленных мембраны ток проходит не только через мембрану, но и преодолевает продольное сопротивление внутренней среды. Электротонический по­тенциал падает экспоненциально с увеличением длины, а расстояние, на котором он падает в 1/е раз (до 37%), называют константой длины (λ).

При сравнительно большой продолжительности действия подпорогового тока изменяется не только мембранный потенциал, но и значение критического потенциала. При этом под катодом проис­ходит смещение уровня критического потенциала вверх, что свидетельствует об инактивации натриевых каналов. Таким образом, возбудимость под катодом уменьшается при длительном воздействии подпорогового тока. Это явление уменьшения возбуди­мости при длительном действии подпорогового раздражителя назы­вается аккомодацией. При этом в исследуемых клетках возникают аномально низкоамплитудные потенциалы действия.

Скорость нарастания интенсивности раздражителя имеет суще­ственное значение при определении возбудимой ткани, поэтому чаще всего используют импульсы прямоугольной формы (импульс тока прямоугольной формы имеет максимальную крутизну нараста­ния). Замедление скорости изменения амплитуды раздражителя при­водит к тому, что происходит инактивация натриевых каналов вследствие постепенной деполяризации клеточной мембраны, а сле­довательно, к падению возбудимости.

Увеличение силы стимула до порогового значения приводит к генерации потенциала действия

Под анодом при действии сильного тока происходит изменение уровня критического потенциала, в противоположном направле­нии - вниз. При этом уменьшается разность меж­ду критическим потенциалом и мембранным потенциалом, т. е. возбудимость под анодом при длительном действии тока повыша­ется.

Очевидно, что увеличение значения тока до пороговой величины приведет к тому, что возбуждение будет возникать под катодом при замыкании цепи. Следует подчеркнуть, что этот эффект может быть выявлен в случае продолжительного действия электрического тока. При действии достаточно сильного тока смещение критического потенциала под анодом может быть весьма существенным и достигать первоначального значения мембранного потенциала. Выключение тока приведет к тому, что гиперполяризация мембраны исчезнет, мембранный потенциал вернется к первоначальному значению, а это соответствует величине критического потенциала, т. е. возникает анодно-размыкательное возбуждение.

Изменение возбудимости и возникновение возбуждения под ка­тодом при замыкании и анодом при размыкании носит название закона полярного действия тока. Экспериментальное подтвержде­ние этой зависимости впервые было получено Пфлюгером еще в прошлом веке.

Как указывалось выше, существует определенное соотношение между временем действия раздражителя и его амплитудой. Эта зависимость в графическом выражении получила название кривой «сила-длительность». Иногда по имени авторов ее на­зывают кривой Гоорвега-Вейса-Лапика. На этой кривой видно, что уменьшение значения тока ниже определенной критической величины не приводит к возбуждению ткани независимо от про­должительности времени, в течение которого действует этот раз­дражитель, а минимальная величина тока, вызывающая возбужде­ние, получила название порога раздражения, или реобазы. Величина реобазы определяется разностью между критическим потенциалом и мембранным потенциалом покоя.

С другой стороны, раздражитель должен действовать не меньше определенного времени. Уменьшение времени действия раздражи­теля ниже критического значения приводит к тому, что раздражитель любой интенсивности не оказывает эффекта. Для характеристики возбудимости ткани по времени ввели понятие порога времени - минимальное (полезное) время, в течение которого должен действовать раздражитель пороговой силы с тем, чтобы вызвать возбуждение.

Порог времени определяется емкостной и резистивной характе­ристикой клеточной мембраны, т. е. постоянной временя T=RC.

В связи с тем что величина реобазы может изменяться, особенно в естественных условиях, и это может привести к значительной погреш­ности в определении порога времени, Лапик ввел понятие хронаксии для характеристики временных свойств клеточных мембран. Хронаксия - время, в течение которого должен действовать раздражитель удвоенной реобазы, чтобы вызвать возбуждение. Использование этого критерия позволяет точно измерить временные характеристики воз­будимых структур, поскольку измерение происходит на крутом изгибе гиперболы

Хронаксиметрия используется при оценке функционального со­стояния нервно-мышечной системы у человека. При ее органических поражениях величина хронаксии и реобазы нервов и мышц значи­тельно возрастает.

Таким образом, при оценке степени возбудимости возбудимых структур используют количественные характеристики раздражителя - амплитуду, продолжительность действия, скорость нарастания амплитуды. Следовательно, количественная оценка физиологических свойств возбудимой ткани производится опосредованно по характеристикам раздражителя.

Переменный ток. Эффективность действия переменного тока определяется не только амплитудой, продолжительностью воздействия, но и частотой. При этом низкочастотный переменный ток, например частотой 50 Гц (сетевой), представляет наибольшую опасность при прохождении через область сердца. В первую очередь это обусловлено тем, что при низких частотах возможно попадание очередного стимула в повышенной уязвимости миокарда и возникновение фибрилляции желудочков сердца. Действие тока частотой выше 10 кГц представляет меньшую опасность, поскольку длительность полупериода составляет 0,05 мс. При такой длительности импульса мембрана клеток вследствие своих емкостных свойств не успевает деполяризоваться до критического уровня. Токи большей частоты вызывают, как правило, тепловой эффект.

Лабильность

Лабильность - относительно большая скорость протекания элементарных циклов возбуждения в нервной, мышечной или иной возбудимой ткани. Мерой лабильности служит наибольшее число импульсов, которое в состоянии воспроизвести ткань за 1 секунду при сохранении частотного соответствия с максимальным ритмом раздражения. Наибольшей лабильностью обладают нервные волокна.

Лабильность ткани - способность ткани к осуществлению определенного количества законченных циклов возбуждения в секунду.
Резюме: я считаю,что возбудимость это одна из важнейших функций организма.Понятие «возбудимость» часто используется в медицинской и биологической литературе также для характеристики состояния нервных центров головного и спинного мозга (например, дыхательного, сосудодвигательного и др.).

2 Свойства биологических мембран

Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.

Строение и функции клеточных мембран

1. Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.

2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4.Высвобождение нейромедиаторов в синаптических окончаниях.

Современными методами электронной микроскопии была определена толщина клеточных мембран (6-12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.

Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные на­правлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.

В фосфолипидном бислое интегрированы глобулярные белки, полярные которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в пло­скости липидного слоя; в обычном состоянии части белковых мо­лекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения. Здесь описана только общая схема строения клеточной мембраны и для других типов клеточных мем­бран возможны значительные различия.

Электрические характеристики мембран. Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающихщих на клеточных мембранах.

Проводимость (g) - величина, обратная электрическому сопро­тивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмемб­ранной разности потенциалов.

Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность кле­точной мембраны пропускать эти вещества, зависит от разности кон­центраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мем­бране определяется подвижностью ионов, толщиной мембраны, рас­пределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.

Проводимость мембраны является мерой ее ионной проницаемо­сти. Увеличение проводимости свидетельствует об увеличении ко­личества ионов, проходящих через мембрану.

Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (ди­аметр 0,5-0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.

Функцию ионных каналов изучают различными способами. На­иболее распространенным является метод фиксации напряжения, или «voltage-clamp». Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный по­тенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соот­ветствии с законом Ома величина тока пропорциональна проводи­мости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембран­ная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.

В настоящее время установлены многие типы каналов для раз­личных ионов. Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.

Изучение функции отдельных каналов возможно методом ло­кальной фиксации потенциала «path-clamp». Стеклян­ный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разре­жение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регист­рируют активность одиночного канала. Система раздражения и ре­гистрации активности канала мало отличается от системы фиксации напряжения.

Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет ве­роятностный характер, но зависит от величины мембранного потен­циала. Суммарный ионный ток определяется вероятностью нахож­дения в открытом состоянии в каждый конкретный период времени определенного числа каналов.

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П. Г. Костюком был разработан метод внутриклеточного диа­лиза, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Ока­залось, что часть ионного канала, открытая во внеклеточное про­странство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мем­браны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так назы­ваемые воротные механизмы).

Рассмотрим принцип работы ионных каналов на примере натри­евого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представ­ляет собой сумму тысяч одиночных токов.

При генерации одиночного потенциала действия в толстом нерв­ном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na ги­гантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов.

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В ча­стности, для калиевых каналов процесс инактивации, как для на­триевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы.

Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обес­печивается деполяризацией клеточной мембраны, например входя­щим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации сво­бодного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существен­ную роль в клетках сердца. Электрогенез кардиомиоцитов рассмат­ривается в главе 7. Электрофизиологические характеристики кле­точных мембран исследуют с помощью специальных методов.

a. На ведущем крае движущейся клетки часто наблюдаются зоны, где плазматическая мембрана образует многочисленные волнистые выросты. b. Деление клетки сопровождается деформацией плазматической мембраны: она впячивается к центру клетки. При делении оплодотворенной яйцеклетки гребневика мембрана впячивается только с одного полюса, пока не достигнет другого. c. Мембраны способны сливаться друг с другом. На этой фотографии мембраны яйцеклетки и сперматозоида вот-вот сольются. Резюме: Все свойства очень полезны для организма.Как я считаю,особенно тем, что связывают свободные радикалы и всячески мешают процессам старения.

3 Мембранный потенциал покоя и действия

потенциал покоя

Схема опыта Ходжкина-Хаксли. В аксон кальмара диаметром около 1 мм, помещенный в морскую воду, вводили активный электрод, второй электрод (электрод сравнения) находился в морской воде. В момент введения электрода внутрь аксона регистрировали скачок отрицательного потенциала, т. е. внутренняя среда аксона была заряжена отрицательно относительно внешней среды.

Электрический потенциал со­держимого живых клеток принято измерять относительно потенци­ала внешней среды, который обычно принимают равным нулю. Поэтому считают синонимами такие понятия, как трансмембранная разность потенциалов в покое, потенциал покоя, мембранный по­тенциал. Обычно величина потенциала покоя колеблется от -70 до -95 мВ. Согласно концепции Ходжкина и Хаксли, величина потенциала покоя зависит от ряда факторов, в частности от селек­тивной (избирательной) проницаемости клеточной для различных ионов; различной концентрации ионов цитоплазмы клет­ки и ионов окружающей среды (ионной асимметрии); работы ме­ханизмов активного транспорта ионов. Все эти факторы тесно свя­заны между собой и их разделение имеет определенную условность.

Известно, что в невозбужденном состоянии клеточная мембрана высокопроницаема для ионов калия и малопроницаема для ионов натрия. Это было показано в опытах с использованием изотопов натрия и калия: спустя некоторое время после введения внутрь аксона радиоактивного калия его обнаруживали во внешней среде. Таким образом, происходит пассивный (по градиенту концентраций) выход ионов калия из аксона. Добавление радиоактивного натрия во внешнюю среду приводило к незначительному повышению его концентрации внутри аксона. Пассивный вход натрия внутрь аксона несколько уменьшает величину потенциала покоя.

Установлено, что имеется разность концентраций ионов калия вне и внутри клетки, причем внутри клетки ионов калия примерно в 20-50 раз больше, чем вне клетки

Разность концентраций ионов калия вне и внутри клетки и высо­кая проницаемость клеточной мембраны для ионов калия обеспечива­ют диффузионный ток этих ионов из клетки наружу и накопление избытка положительных ионов К+ на наружной стороне клеточной мембраны, что противодействует дальнейшему выходу ионов К+ из клетки. Диффузионный ток ионов калия существует до тех пор, пока стремление их двигаться по концентрационному градиенту не уравно­весится разностью потенциалов на мембране. Эта разность потенциа­лов называется калиевым равновесным потенциалом.

Равновесный потенциал (для соответствующего иона, Ек) - разность потенциалов между внутренней средой клетки и внекле­точной жидкостью, при которой вход и выход иона уравновешен (химическая разность потенциалов равна электрической).

Важно подчеркнуть следующие два момента: 1) состояние рав­новесия наступает в результате диффузии лишь очень небольшого количества ионов (по сравнению с их общим содержанием); кали­евый равновесный потенциал всегда больше (по абсолютному зна­чению) реального потенциала покоя, поскольку мембрана в покое не является идеальным изолятором, в частности имеется небольшая утечка ионов Na+. Сопоставление теоретических расчетов с исполь­зованием уравнений постоянного поля Д. Голдмана, формулы Нернста показали хорошее совпадение с экспериментальными данными при изменении вне- и внутриклеточной концентрации К+.

Трансмембранная диффузионная разность потенциалов рассчи­тывается по формуле Нернста:

Ek=(RT/ZF)ln(Ko/Ki)

где Ек - равновесный потенциал;

R - газовая постоянная;

Т - абсолютная температура;

Z - валентность нона;

F - постоянная Фарадея;

Ко и Ki - концентрации ионов К+ вне и внутри клетки соответственно.

Величина мембранного потенциала для значений концентрации ионов К+ при температуре +20 °С составит примерно -60 мВ. Поскольку концентрация ионов К+ вне клетки меньше, чем внутри, Ек будет отрицательным.

В состоянии покоя клеточная мембрана высокопроницаема не только для ионов К+. У мышечных волокон мембрана высокопро­ницаема для ионов СГ. В клетках с высокой проницаемостью для ионов Сl-, как правило, оба иона (Сl- и К+) практически в одинаковой степени участвуют в создании потенциала покоя.

Известно, что в любой точке электролита количество анионов всегда соответствует количеству катионов (принцип электронейт­ральности), поэтому внутренняя среда клетки в любой точке электронейтральна. Действительно, в опытах Ходжкина, Хаксли и Катца перемещение электрода внутри аксона не выявило различие в транс­мембранной разности потенциалов.

Поскольку мембраны живых клеток в той или иной степени проницаемы для всех ионов, совершенно очевидно, что без специ­альных механизмов невозможно поддерживать постоянную разность концентрации ионов (ионную асимметрию). В клеточных мембранах существуют специальные системы активного транспорта, работаю­щие с затратой энергии и перемещающие ионы против градиента концентраций. Экспериментальным доказательством существования механизмов активного транспорта служат результаты опытов, в которых активность АТФазы подавляли различными способами, на­пример сердечным гликозидом оуабаином. При этом происходило выравнивание концентраций ионов К+ вне и внутри клетки и мем­бранный потенциал уменьшался до нуля.

Важнейшим механизмом, поддерживающим низкую внутрикле­точную концентрацию ионов Na+ и высокую концентрацию ионов К+, является натрий-калиевый насос. Известно, что в клеточной мембране имеется система переносчиков, каждый из ко­торых связывается с 3 находящимися внутри клетки ионами Na+ и выводит их наружу. С наружной стороны переносчик связывается с 2 находящимися вне клетки ионами К+, которые переносятся в цитоплазму. Энергообеспечение работы систем переносчиков обес­печивается АТФ. Функционирование насоса по такой схеме приводит к следующим результатам:

1. Поддерживается высокая концентрация ионов К+ внутри клет­ки, что обеспечивает постоянство величины потенциала покоя. Вследствие того что за один цикл обмена ионов из клетки выводится на один положительный ион больше, чем вводится, активный транс­порт играет роль в создании потенциала покоя. В этом случае говорят об электрогенном насосе. Однако величина вклада электрогенного насоса в общее значение потенциала покоя обычно невелика и составляет несколько милливольт.

2. Поддерживается низкая концентрация ионов натрия внутри клетки, что, с одной стороны, обеспечивает работу механизма генерации потенциала действия, с другой - обеспечивает сохранение нормальных осмолярности и объема клетки.

3. Поддерживая стабильный концентрационный градиент Na+, натрий-калиевый насос способствует сопряженному транспорту ами­нокислот и сахаров через клеточную мембрану.

Таким образом, возникновение трансмембранной разности по­тенциалов (потенциала покоя) обусловлено высокой проводимостью клеточной мембраны в состоянии покоя для ионов К+ (для мышечных клеток и ионов Сl-), ионной асимметрией концентраций для ионов К+ (для мышечных клеток и для ионов Cl-), работой систем активного транспорта, которые создают и поддерживают ионную асимметрию.

Потенциал действия

Емкость и работа метаболических ионных насосов приводят к накоплению потенциальной электрической энергии на клеточной мембране в форме потенциала покоя. Эта энергия может освобождаться в виде специфических электрических (по­тенциала действия), характерных для возбудимых тканей: нервной, мышечной, некоторых рецепторных и секреторных клеток. Под потенциалом действия понимают быстрое колебание потенциала покоя, сопровождающееся, как правило, перезарядкой мембраны. Форма потенциала действия аксона и терминология, используемая для описания потенциала действия..

Для правильного понимания процессов, происходящих при ге­нерации потенциала действия, используем схему опыта. Если через стимулирующий электрод подавать короткие толчки гиперполяризующего тока, то можно зарегистри­ровать увеличение мембранного потенциала, пропорциональное ам­плитуде подаваемого тока; при этом мембрана проявляет свои ем­костные свойства - замедленное нарастание и снижение мембран­ного потенциала.

Ситуация будет изменяться, если через стимулирующий электрод подавать короткие толчки деполяризующего тока. При небольшой (подпороговой) величине деполяризующего тока мембрана ответит пассивной деполяризацией и проявит емкостные свойства. Подпороговое пассивное поведение клеточной мембраны называется элек­тротоническим, или электротоном. Увеличение деполяризующего тока приведет к появлению активной реакции клеточной мембраны в форме повышения натриевой проводимости (gNa+). При этом проводимость клеточной мембраны не будет подчиняться закону Ома. Отклонение от пассивного поведения проявляется обычно при 50-80% значении порогового тока. Активные подпороговые изме­нения мембранного потенциала называются локальным ответом.

Смещение мембранного потенциала до критического уровня при­водит к генерации потенциала действия. Минимальное значение тока, необходимого для достижения критического потенциала, на­зывают пороговым током. Следует подчеркнуть, что не существует абсолютных значений величины порогового тока и критического уровня потенциала, поскольку эти параметры зависят от электри­ческих характеристик мембраны и ионного состава окружающей внешней среды, а также от параметров стимула.

В опытах Ходжкина и Хаксли был обнаружен, на первый взгляд, удивительный эффект. Во время генерации потенциала действия мем­бранный потенциал уменьшался не просто до нуля, как следовало бы из уравнения Нернста, но изменил свой знак на противоположный.

Анализ ионной природы потенциала действия, проведенный первоначально Ходжкиным, Хаксли и Катцем, позволил установить, что фронт нарастания потенциала действия и перезарядка мембраны (овершут) обусловлены движением ионов натрия внутрь клетки. Как уже указывалось выше, натриевые каналы оказались электроуправляемыми. Деполяризующий толчок тока приводит к активации натри­евых каналов и увеличению натриевого тока. Это обеспечивает ло­кальный ответ. Смещение мембранного потенциала до критического уровня приводит к стремительной деполяризации клеточной мембра­ны и обеспечивает фронт нарастания потенциала действия. Если уда­лить ион Na+ из внешней среды, то потенциал действия не возникает. Аналогичный эффект удавалось получить при добавлении в перфузионный раствор ТТХ (тетродотоксин) - специфического блокатора на­триевых каналов. При использовании метода «voltage-clamp» было показано, что в ответ на действие деполяризующего тока через мембрану протекает кратковременный (1-2 мс) входящий ток, который сменяется через некоторое время выходящим током. При замене ионов натрия на другие ионы и вещества, например холин, удалось показать, что входящий ток обеспечивается натрие­вым током, т. е. в ответ на деполяризующий стимул происходит повы­шение натриевой проводимости (gNa+). Таким образом, развитие фа­зы деполяризации потенциала действия обусловлено повышением на­триевой проводимости.

Критический потенциал определяет уровень максимальной акти­вации натриевых каналов. Если смещение мембранного потенциала достигает значения критического уровня потенциала, то процесс по­ступления ионов Na+ в клетку лавинообразно нарастает. Система на­чинает работать по принципу положительной обратной связи, т. е. возникает регенеративная (самоусиливающаяся) деполяризация.

Перезарядка мембраны, или овершут, весьма характерна для большинства возбудимых клеток. Амплитуда овершута характери­зует состояние мембраны и зависит от состава вне- и внутрикле­точной среды. На высоте овершута потенциал действия приближается к равновесному натриевому потенциалу, поэтому происходит изме­нение знака заряда на мембране.

Экспериментально было показано, что амплитуда потенциала действия практически не зависит от силы стимула, если он превы­шает пороговую величину. Поэтому принято говорить, что потенциал действия подчиняется закону "все или ничего".

На пике потенциала действия проводимость мембраны для ионов натрия (gNa+) начинает быстро снижаться. Этот процесс называется инактивацией. Скорость и степень натриевой инактивации зависят от величины мембранного потенциала, т. е. они потенциалзависимы. При постепенном уменьшении мембранного потенциала до - 50 мВ (например, при дефиците кислорода, действии некоторых лекарст­венных веществ) система натриевых каналов полностью инактивируется и клетка становится невозбудимой.

Потенциалзависнмость активации и инактивации в большой сте­пени обусловлена концентрацией ионов кальция. При повышении концентрации кальция значение порогового потенциала увеличива­ется, при понижении - уменьшается и приближается к потенциалу покоя. При этом в первом случае возбудимость уменьшается, во втором - увеличивается.

После достижения пика потенциала действия происходит реполяризациа, т. е. мембранный потенциал возвращается к контроль­ному значению в покое. Рассмотрим эти процессы подробнее. Раз­витие потенциала действия и перезарядка мембраны приводят к тому, что внутриклеточный потенциал становится еще более поло­жительным, чем равновесный калиевый потенциал, и, следователь­но, электрические силы, перемещающие ионы калия через мембрану, увеличиваются. Максимума эти силы достигают во время пика потенциала действия. Кроме тока, обусловленного пассивным пере­движением ионов калия, был обнаружен задержанный выходящий ток, который также переносился ионами К+, что было показано в опытах с применением изотопа К+. Этот ток достигает максимума спустя 5-8 мс от начала генерации потенциала действия. Введение тетраэтиламмония (ТЭА) - блокатора калиевых каналов - замед­ляет процесс реполяризации. В обычных условиях задержанный выходящий калиевый ток существует некоторое время после гене­рации потенциала действия и это обеспечивает гиперполяризацию клеточной мембраны, т. е. положительный следовой потенциал. Положительный следовой потенциал может возникать и как след­ствие работы натриево-электрогенного насоса.

Инактивация натриевой системы в процессе генерации потенци­ала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности.

Постепенное восстановление потенциала покоя в процессе репо­ляризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности, или экзальтации.

Продолжительность периода абсолютной рефрактерности ограни­чивает максимальную частоту генерации потенциалов действия дан­ным типом клеток. Например, при продолжительности периода аб­солютной рефрактерности 4 мс максимальная частота равна 250 Гц.

Н. Е. Введенский ввел понятие лабильности, или функциональ­ной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительно­стью периода рефрактерности. Наиболее лабильными являются во­локна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.

Таким образом, генерация потенциала действия в возбудимых мембранах возникает под влиянием различных факторов и сопро­вождается повышением проводимости клеточной мембраны для ионов натрия, входом их внутрь клетки, что приводит к деполяри­зации клеточной мембраны и появлению локального ответа. Этот процесс может достигнуть критического уровня деполяризации, после чего проводимость мембраны для натрия увеличивается до мак­симума, мембранный потенциал при этом приближается к натрие­вому равновесному потенциалу. Через несколько миллисекунд про­исходит инактивация натриевых каналов, активация калиевых ка­налов, увеличение выходящего калиевого тока, что приводит к реполяризации и восстановлению исходного потенциала покоя. Мембранный потенциал , разность электрических потенциалов между растворами a и b, разделенных проницаемой мембраной m : D a b j = j a - j b . В частном случае, когда мембрана проницаема только для определенного В z в (z B - зарядовое число), общего для растворов a и b, мембранный потенциал (иногда его называют потенциалом Нернста) рассчитывают по формуле:

где F -число Фарадея, R -газовая постоянная, Т -абсолютная температура, a B b , a B a - активности . В растворах b и a, D a b j B -стандартный потенциал распределения В, равный

Резюме: Мембранный потенциал покоя есть у любой клетки. Говоря наиболее абстрактно, он нужен для транспорта веществ - самых разных - из клетки и в клетку. Без транспорта ионов нет жизни.

4)Фазы возбудимости при возбуждении.

Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки.

Супернормальная возбудимость (экзальтация) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

Сопоставление потенциала действия и сокращения миокарда с фазами изменения возбудимости . 1 - фаза деполяризации; 2 - фаза начальной быстрой реполяризации; 3 - фаза медленной реполяризации (фаза плато); 4 - фаза конечной быстрой реполяризации; 5 - фаза абсолютной рефрактерности; 6 - фаза относительной рефрактерности; 7 - фаза супернормальной возбудимости. Рефрактерность миокарда практически совпадает не только с возбуждением, но и с периодом сокращения.

Резюме: я считаю.что время длительности и прцесс каждой фазы зависит анестезирующих веществ,также связано с понижением лабильности и нарушением механизма проведения возбуждения по нервным волокнам.

Реферат по физиологии на тему: «Возбудимость и её изменения, лабильность»

Выполнил: студент 204 группы

Пономарев Петр

Возбудимость и её измерение, лабильность.

Свойства биологических мембран.

Мембранный потенциал покоя и действия.

Фазы возбудимости при возбуждении.

Возбудимость её измерения, лабильность.

Возбудимость - более узкое понятие, которое характеризует свойство тканей возбуждаться в ответ на действие раздражителя. Ткани, обладающие этим свойством, называются возбудимыми. Проявляется возбуждение возникновением потенциала действия. В основе возбуждения лежат сложные физико-химические процессы. Начальный пусковой момент возбуждения - изменения ионной проницаемости и электрических потенциалов мембраны. Возбудимые ткани имеют ряд свойств: раздражимость - способность тканей воспринимать раздражение, возбудимость - способность тканей реагировать возбуждением на раздражение, проводимость - способность распространять возбуждение, лабильность - скорость протекания элементарных циклов возбуждения. Лабильность отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Порог раздражения (в физиологии нервных и мышечных клеток), наименьшая сила раздражителя (обычно электрического тока), способная вызвать распространяющийся потенциал действия

Методы изучения описанных явлений разнообразны. Так, о возбудимости можно судить по наименьшей силе раздражителя, необходимой для возникновения той или иной рефлекторной реакции или по пороговой силе тока или пороговому сдвигу потенциала, достаточным для возникновения ПД. Здесь необходимо ввести такие понятия, как реобаза и хронаксия. Реобаза (от греч. rheos - течение, поток и basis - ход, движение; основание), наименьшая сила постоянного электрического тока, вызывающая при достаточной длительности его действия возбуждение в живых тканях. Понятие реобазы и хронаксии ввёл в физиологию Л. Лапик в 1909, определяя зависимость между силой тока и длительностью его действия при изучении наименьшего (порогового) эффекта возбудимых тканей. Реобаза, как и хронаксия, даёт представление о возбудимости тканей и органов по порогу силы и длительности действия раздражения. Реобаза соответствует порогу раздражения и выражается в вольтах или миллиамперах. Значение реобазы можно вычислить по формуле: i = a/t + b, где i - сила тока, t - длительность его действия, а и b - константы, определяемые свойствами ткани. Константа b является Р., так как при длительном действии раздражающего тока отношение a/t будет очень мало и i практически равняется b. Р. нередко называются пороговые значения не только электрических, но и других раздражителей. Хронаксия (от греч. chronos - время и axia - цена, мера), наименьшее время действия на ткань постоянного электрического тока удвоенной пороговой силы (удвоенной реобазы), вызывающего возбуждение ткани. Было также экспериментально установлено (голландский физик Л. Горвег, 1892, французский физиолог Ж. Вейс, 1901), что величина стимула, вызывающего возбуждающий эффект в тканях, находится в обратной зависимости от длительности его действия и графически выражается гиперболой - кривая <сила - время. Минимальная сила тока, которая при неограниченно долгом действии вызывает эффект возбуждения (реобаза), соответствует на рисунке отрезку OA (BC). Наименьшее т. н. полезное время действия порогового раздража

ющего стимула соответствует отрезку OC (полезное потому, что дальнейшее увеличение времени действия тока не имеет значения для возникновения потенциала действия). При кратковременных раздражениях кривая силы - времени становится параллельной оси ординат, т. е. возбуждение не возникает при любой силе раздражителя. Приближение кривой асимптотически к линии, параллельной абсциссе, не позволяет достаточно точно определять полезное время, т.к. незначительные отклонения реобазы, отражающие изменения функционального состояния биологических мембран в покое, сопровождаются значительными колебаниями времени раздражения. В связи с этим Лапик предложил измерять другую условную величину - хронаксию, т. е. время действия раздражителя, равное двойной реобазе [на рисунке соответствует отрезку OD (EF)]. При данной величине раздражителя наименьшее время его действия, при котором возможен пороговый эффект, равно OF. Установлено, что форма кривой, характеризующей возбудимость ткани в зависимости от интенсивности и длительности действия раздражителя, однотипна для самых разнообразных тканей. Различия между ними касаются только абсолютного значения соответствующих величин и, прежде всего, времени, т. е. возбудимые ткани отличаются друг от друга временной константой раздражения. Лабильность можно измерить, раздражая ткань электрическим током различной частоты. Момент, когда ткань произойдёт преобразование ритма (ткань перестанет воспроизводить заданный ритм без изменений) и будет лабильностью данной ткани. Единицы её измерения - количество воспроизводимых импульсов за единицу времени [имп./сек.(мин.), и т. д. ]. Проводимость можно охарактеризовать расстоянием, преодолённым импульсом за единицу времени, то есть скоростью распространения импульса.

Лабильность, или функциональная подвижность (Н.Е.Введенский)- это скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД. Это означает, что лабильность, как и ПД, определяется скоростью перемещения ионов в клетку и из клетки, которая, в свою очередь, зависит от скорости изменения проницаемости клеточной мембраны. Особое значение при этом имеет длительность рефрактерной фазы: чем больше рефрактерная фаза, тем ниже лабильность ткани. Мерой лабильности является максимальное число ПД, которое ткань может воспроизвести в 1 с. В эксперименте лабильность исследуют в процессе регистрации максимального числа ПД, которое может воспроизвести клетка при увеличении частоты ритмического раздражения.

Лабильность различных клеток существенно различается. Так, лабильность нерва равна 500-1000, нейронов - 20-200, синапса - порядка 100 импульсов в секунду. Лабильность клеток понижается при длительном бездействии и при утомлении.

Следует отметить, что при постепенном увеличении частоты ритмического раздражения лабильность ткани повышается, т.е. ткань отвечает более высокой частотой возбуждения по сравнению с исходной частотой. Это явление открыто А.А.Ухтомским и называется усвоением ритма раздражения.

Термин интеллектуальная лабильность часто применяется по отношению к сотрудникам и может выявляться с помощью тестов.

Термин применяется по отношению к подвижности и неустойчивости психических процессов, а также физиологических параметров организма – температуре тела, давлению и др. Для нервной системы главным показателем является соотношение показателей явлений торможения и возбудимости. Возбудимость – это реакция живой ткани на внешний раздражитель. Лабильность зависит от временных показателей восстановления работоспособности ткани в завершении серии новых возбуждений.

В нашей стране этот термин разработан трудами русского физиолога Н.Е. Введенского в 1886 г. Профессором Н.Е Введенским сделал неоспоримым фактом такое явление, как различие в количестве ответной реакции на устойчивый ряд раздражителей. Также ему удалость выяснить низкую утомляемость нерва. Объясняется это малой затратой энергии нерва на раздражитель. Высокая лабильность также помогает снизить затраты энергии на реакцию от нервного возбуждения. Свойства подвижности изучал лабораторными способами И.П. Павлов. В это же время было вынесено предложение использовать ряд методов для диагностики подвижности. Эти методы предоставляли возможность установить быстроту выявления скорости и проблем в смене нервных действий на обратные по знаку и значению действия и процессы.

Центростремительное и центробежное направление полученного возбуждения сказывается в виде появления реакции на возбуждение в областях нервных центров или рецепторов. Реакция на возбуждение может охватить всего одно нервное волокно, не касаясь других волокон. Быстрота возникновения реакции напрямую зависит от таких параметров, как диаметр волокна и особенности состава оболочки волокна. В толстом волокне реакция протекает быстрее.

Быстрота реакции нервной деятельности напрямую связана с той скоростью, с которой протекает реакция нервной системы, возникающая при различных сигналах внешней среды. Степень развития лабильности нервных процессов – это диагностика сигнала в единичном случае, не поддавшейся внешней дифференциации. Подвижностью называют на дифференциальную серию сигналов, получившую нужную ответную реакцию. Подвижность различается по видам. Она может быть знаковой (различается по типам дорожных сигналов), цветовые (обычно в пример приводится цветовая кодировка сигналов светофора) и смысловые – набор слов и логических заключений независимо от их форм изложения). Раздражители также можно дифференцировать. Они могут восприниматься естественным образом при помощи органов человека – обоняния, носа, зрения, слуха и т.д. Такие раздражители можно отнести к адекватным. Неадекватные раздражители поддаются восприятию органов чувств только если раздражитель был силён и длился долгое время.

Физиология возбудимых тканей изучает основные закономерности взаимодействия между организмом, его составляющими и действующими факторами внешней среды.

Возбудимые ткани — специально приспособленные к осуществлению быстрых ответных реакций на действие раздражителя нервная ткань, железистая ткань и мышечная ткань.

Человек и животные живут в мире света, звуков, запахов, действия сил гравитации, механических давлений, переменной температуры и прочих сигналов внешней или внутренней среды. Каждый из своего собственного опыта знает, что мы не только способны мгновенно воспринимать эти сигналы (называемые также раздражителями), но и реагировать на них. Это восприятие осуществляется структурами нервной ткани, а одной из форм реагирования на воспринятые сигналы являются двигательные реакции, осуществляемые мышечными тканями. В настоящей главе будут рассмотрены физиологические основы процессов и механизмов, обеспечивающих восприятие и реагирование организма на разнообразные сигналы внешней и внутренней среды.

Важнейшими специализированными тканями организма, обеспечивающими восприятие сигналов и ответные реакции на действие разнообразных раздражителей, служат нервная и мышечная ткани, которые традиционно называют возбудимыми тканями. Однако истинно возбудимыми в них являются мышечные клетки и нейроны. Клетки же нейроглии, которых в мозге приблизительно в 10 раз больше, чем , не обладают возбудимостью.

Возбудимость — способность клеток реагировать определенным образом на действие раздражителя.

Возбуждение — активный физиологический процесс, ответная реакция возбудимых клеток, проявляющаяся генерацией потенциала действия, его проведением и для мышечных клеток сокращением.

Возбудимость в эволюции клеток развилась из свойства раздражимости, присущей всем живым клеткам, и является частным случаем раздражимости.

Раздражимость — это универсальное свойство клеток отвечать на действие раздражителя изменением процессов жизнедеятельности. Например, нейтрофильные , восприняв своими рецепторами действие специфического сигнала — антигена, прекращают движение в потоке крови, прикрепляются к стенке капилляра и мигрируют в направлении воспалительного процесса в ткани. Эпителий слизистой полости рта на действие раздражающих веществ реагирует увеличением выработки и выделения слизи, а эпителий кожи при воздействии ультрафиолетовых лучей накапливает защитный пигмент.

Возбуждение проявляется специфическими и неспецифическими изменениями, регистрируемыми в клетке.

Специфическим проявлением возбуждения для нервных клеток являются генерация и проведение потенциала действия (нервного импульса) на относительно большие расстояния без уменьшения его амплитуды, а для мышечных клеток — генерация, проведение потенциала действия и сокращение. Таким образом, ключевым показателем возникновения возбуждения является генерация потенциала действия. Признак наличия потенциала действия — перезарядка (инверсия знака заряда). При этом па короткое время поверхность мембраны вместо положительного, имеющегося в покое, приобретает отрицательный заряд. У клеток, не обладающих возбудимостью, при действий раздражителя разность потенциалов на клеточной мембране может лишь изменяться, но это не сопровождается перезарядкой мембраны.

К неспецифическим проявлениям возбуждения нервных и мышечных клеток относят изменение проницаемости клеточных мембран для различных веществ, ускорение обмена веществ и соответственно увеличение поглощения клетками кислорода и выделения углекислого газа, снижение рН, возрастание температуры клетки и т.д. Эти проявления во многом сходны с компонентами ответной реакции на действие раздражителя невозбудимых клеток.

Возбуждение может возникать под влиянием сигналов, поступающих из внешней среды, из микроокружения клетки, и спонтанно (автоматически) из-за изменения проницаемости клеточной мембраны и обменных процессов в клетке. О таких клетках говорят, что они обладают автоматией. Автоматия присуща клеткам водителя ритма сердца, гладким миоцитам стенок сосудов и кишечника.

В эксперименте можно наблюдать развитие возбуждения при непосредственном воздействии раздражителей на нервную и мышечную ткани. Различают раздражители (сигналы) физической (температура, электрический ток, механические воздействия), химической ( , нейромедиаторы, цитокины, факторы роста, вкусовые, пахучие вещества) и физико- химической природы (осмотическое давление, рН).

По признаку биологического соответствия раздражителей специализации сенсорных рецепторов, воспринимающих в организме воздействие этих раздражителей, последние делят на адекватные и неадекватные.

Адекватные раздражители - раздражители, к восприятию которых рецепторы приспособлены и реагируют на малую силу воздействия. Например, адекватными для фоторецепторов и других клеток сетчатки глаза являются кванты света, ответная реакция на которые регистрируется в фоторецепторах сетчатки при поглощении лишь 1-4 квантов.

Неадекватные раздражители не вызывают возбуждения даже при значительной силе воздействия. Лишь при чрезмерных, граничащих с повреждением, силах они могут вызвать возбуждение. Так, ощущение искр света может возникнуть при ударе в область глаза. При этом энергия механического, неадекватного раздражителя в миллиарды раз превышает величину энергии светового раздражителя, вызывающего ощущение света.

Состояния клеток возбудимых тканей

Все живые клетки обладают раздражимостью, т.е. способностью реагировать на различные стимулы и переходить из состояния физиологического покоя в состояние активности. Этот процесс сопровождается изменением обмена веществ, а дифференцированные ткани (нервная, мышечная, железистая), осуществляющие специфические функции (проведение нервного импульса, сокращение или выделение секрета), — еще и изменением электрического потенциала.

Клетки возбудимых тканей могут находиться в трех различных состояниях (рис. 1). При этом клетки из состояния физиологического покоя могут переходить в активные состояния возбуждения или торможения, и наоборот. Клетки, находящиеся в состоянии возбуждения, могут переходить в состояние торможения, а из состояния торможения — в состояние возбуждения. Скорость перехода различных клеток или тканей из одного состояния в другое значительно различается. Так, двигательные нейроны спинного мозга могут от 200 до 300 раз в секунду переходить из состояния покоя в состояние возбуждения, тогда как вставочные нейроны — до 1000 раз.

Рис. 1. Взаимосвязь между основными физиологическими состояниями клеток возбудимых тканей

Физиологический покой — состояние, характеризующееся:

  • относительно постоянным уровнем обмена процессов;
  • отсутствием функциональных проявлений ткани.

Активное состояние возникает под действием раздражителя и характеризуется:

  • выраженным изменением уровня обменных процессов;
  • проявлениями функциональных отправлений ткани.

Возбуждение — активный физиологический процесс, возникающий под действием раздражителя, способствующий переходу ткани из состояния физиологического покоя к специфической деятельности (генерация нервного импульса, сокращение, секреция). Неспецифические признаки возбуждения:

  • изменение заряда мембраны;
  • повышение обменных процессов;
  • увеличение затраты энергии.

Торможение — активный физиологический процесс, возникающий под действием определенного раздражителя и характеризующийся угнетением или прекращением функциональной активности ткани. Неспецифические признаки торможения:

  • изменение проницаемости клеточной мембраны;
  • изменение движения ионов через нее;
  • изменение заряда мембраны;
  • снижение уровня обменных процессов;
  • снижение затраты энергии.

Основные свойства возбудимых тканей

Любая живая ткань обладает следующими свойствами: возбудимостью, проводимостью и лабильностью.

Возбудимость — способность ткани отвечать на действие раздражителей переходом в активное состояние. Возбудимость характерна для нервной, мышечной и железистой тканей. Возбудимость обратно пропорциональна силе действующего раздражителя: В = 1/S. Чем больше сила действующего раздражителя, тем меньше возбудимость, и наоборот. Возбудимость зависит от состояния обменных процессов и заряда клеточной мембраны. Невозбудимость = рефрактерность. Наибольшей возбудимостью обладает нервная ткань, затем поперечно-полосатая скелетная и сердечная мышечная ткань, железистая ткань.

Проводимость — способность ткани проводить возбуждение в двух или одном направлении. Показателем проводимости является скорость проведения возбуждения (от 0,5 до 120 м/с в зависимости от ткани и строения волокна). Быстрее всего возбуждение передается по миелинизированному нервному волокну, затем по немиелинезированному волокну, и самой низкой проводимостью обладает синапс.

Функциональная лабильность — способность ткани воспроизводить без искажения частоту ритмически наносимых импульсов. Показателем функциональной лабильности является количество импульсов, которое данная структура может передавать без искажения за единицу времени. Например, нерв — 500-1000 имп/с, мышца — 200-250 имп/с, синапс — 100-120 имп/с.

Роль силы раздражится и времени его действия. Хронаксия - это временная характеристика возбудимости. Зависимость между пороговой интенсивностью раздражения и длительностью называют кривой силы длительности или кривой Гоорвега — Вейсса (рис. 2). Она имеет форму равносторонней гиперболы. На оси абсцисс откладывают время, на оси ординат — пороговую интенсивность раздражения.

Рис. 2. Кривая силы длительности (Гоорвега — Вейсса)

По оси абсцисс отложено время (t); по оси ординат — пороговая интенсивность раздражения (i); 0А — реобаза: 0В — двойная реобаза: ОД — хропаксия; 0Ж- полезное время

Из рис. 2 можно видеть, что при слишком малой величине интенсивности раздражения (менее OA) ответная реакция не возникает при любой его длительности. Отсутствует реакция и при слишком малом времени действия раздражителя (менее ОГ). При интенсивности раздражения, соответствующей отрезку OA, возникает возбуждение при условии большей длительности действия раздражающего импульса. В пределах времени, определяемого отрезком ОЖ, имеет место зависимость между пороговой интенсивностью и длительностью раздражения: меньшей длительности раздражающего импульса соответствует большая пороговая интенсивность (отрезку ОД соответствует OB, а ОЕ — отрезку ОБ). За пределами этого времени (ОЖ) изменение длительности действия раздражителя уже не влияет на величину порога раздражения. Наименьшее время, в течение которого проявляется зависимость между пороговой интенсивностью раздражения и его длительностью, получило название полезного времени (отрезок ОЖ). Полезное время является временным показателем возбуждения. По его величине можно судить о функциональном состоянии различных возбудимых образований. Однако для определения полезного времени необходимо найти несколько точек кривой, для чего требуется наносить множество раздражений. Поэтому большое распространение получило определение другого временного показателя, который ввел в практику физиологических исследований Л. Лап и к (1907). Он предложил для характеристики скорости возникновения процесса возбуждения параметры: реобазу и хронаксию.

Реобаза — это пороговая интенсивность раздражения при большой длительности его действия (отрезок OA); хронаксия - время, в течение которого должен действовать ток, равный двойной реобазе (ОВ), для получения порогового ответа (отрезок ОД). В течение этого времени происходит уменьшение мембранного потенциала до величины, соответствующей критическому уровню деполяризации. Для разных возбудимых образований величина хронаксии неодинакова. Так, хронаксия локтевого нерва человека составляет 0,36 мс, срединного — 0,26 мс, общего сгибателя пальцев — 0,22 мс, а общего разгибателя — 0,58 мс.

Формула М. Вейса

где I — пороговая сила тока; t — время действия раздражителя (с); а — константа, характеризующая постоянное время раздражения с момента, когда кривая переходит в прямую линию, идущую параллельно оси ординат; b — константа, соответствующая силе раздражения при постоянной его длительности, когда кривая переходит линию, идущую параллельно оси абсцисс.

Показатели возбудимости

Для оценки состояния возбудимости у человека и животных исследуют в эксперименте ряд ее показателей, которые указывают, с одной стороны, на какие раздражители реагирует возбудимая ткань, а с другой — как она реагирует на воздействия.

Возбудимость нервных клеток, как правило, выше, чем мышечных. Уровень возбудимости зависит не только от вида клетки, но и от многочисленных факторов, влияющих на клетку и особенно на состояние се мембраны (проницаемости, поляризации и т.д.).

К показателям возбудимости относят следующие.

Порог силы раздражителя — это минимальная величина силы действующего раздражителя, достаточная для инициирования возбуждения. Раздражители, сила которых ниже пороговой, называют подпороговыми, а имеющие силу выше пороговой — над- или сверхпороговыми.

Между возбудимостью и величиной порога силы имеется обратная зависимость. Чем на меньшие по силе воздействия возбудимая клетка или ткань реагирует развитием возбуждения, тем их возбудимость выше.

Возбудимость ткани зависит от ее функционального состояния. При развитии патологических изменений в тканях их возбудимость может существенно понижаться. Таким образом, измерение порога силы раздражителя имеет диагностическую значимость и используется в электродиагностике заболеваний нервной и мышечной тканей. Одним из ее примеров может быть электродиагностика заболеваний пульпы зуба, получившая название электроодонтометрия.

Электроодонтометрия (электроодонтодиагностика) — метод использования электрического тока с диагностической целью для определения возбудимости нервной ткани зубов (сенсорных рецепторов чувствительных нервов пульпы зубов). В пульпе зуба содержится большое количество чувствительных нервных окончаний, реагирующих на определенной силы механические, температурные и другие воздействия. При электроодонтометрии определяется порог ощущения действия электрического тока. Порог силы электрического тока для здоровых зубов составляет 2-6 мкА. при среднем и глубоком кариесе — 10-15, остром пульпите — 20-40, при гибели коронковой пульпы — 60, при гибели всей пульпы — 100 мкА и более.

Величина пороговой силы раздражения возбудимой ткани зависит от продолжительности воздействия раздражителя.

Это можно проверить в эксперименте при воздействии импульсов электрического тока на возбудимую ткань (нерв или мышцу), наблюдая, при каких значениях силы и продолжительности импульса электрического тока ткань отвечает возбуждением, а при каких значениях возбуждение не развивается. Если продолжительность воздействия будет очень короткой, то возбуждение в ткани может не возникнуть даже при сверхпороговых воздействиях. Если продолжительность действия раздражителя увеличивать, то ткань начнет реагировать возбуждением на более низкие по силе воздействия. Возбуждение возникнет при наименьшем по силе воздействии, если его длительность будет бесконечно большой. Зависимость между порогом силы и порогом времени раздражения, достаточными для развития возбуждения, описывается кривой «сила — длительность» (рис. 3).

Рис. 3. Кривая «сила-длительность» (соотношения силы и длительности воздействия, необходимые для возникновения возбуждения). Ниже и слева от кривой — соотношения силы и длительности раздражителя, недостаточные для возбуждения, выше и справа — достаточные

Специально для характеристики порога силы электрического тока, широко используемого в качестве раздражителя при исследовании ответных реакций тканей, введено понятие «реобаза». Реобаза — это минимальная сила электрического тока, необходимая для инициирования возбуждения, при длительном его воздействии на клетку или ткань. Дальнейшее удлинение раздражения практически не влияет на величину пороговой силы.

Порог времени раздражения — минимальное время, в течении которого должен действовать раздражитель пороговой силы, чтобы вызвать возбуждение.

Между возбудимостью и величиной порога времени также имеется обратная зависимость. Чем на меньшие по времени пороговые воздействия ткань реагирует развитием возбуждения, тем се возбудимость выше. Величина порогового времени для возбудимой ткани зависит от силы воздействия раздражителя, что видно на рис. 3.

Хронаксия - минимальное время, в течение которого должен действовать раздражитель силой, равной двум реобазам, чтобы вызвать возбуждение (см. рис. 3). Этот показатель возбудимости также применяется для случая использования в качестве раздражителя электрического тока. Хронаксия нервных клеток и волокон скелетных мышц составляет десятитысячные доли секунды, а гладких мышц — в десятки раз больше. Хронаксия как показатель возбудимости используется для тестирования состояния и функциональных возможностей скелетных мышц и нервных волокон здорового человека (в частности, в спортивной медицине). Определение хронаксии имеет ценность для диагностики ряда заболеваний мышц и нервов, так как при этом возбудимость последних обычно снижается и хронаксия увеличивается.

Минимальный градиент (крутизна ) нарастания силы раздражителя во времени. Это минимальная скорость увеличения силы раздражителя во времени, достаточная для инициирования возбуждения. Если сила раздражителя увеличивается очень медленно, то ткань приспосабливается к его действию и не отвечает возбуждением. Такое приспособление возбудимой ткани к медленно увеличивающейся силе раздражителя называют аккомодацией. Чем больше минимальный градиент, тем ниже возбудимость ткани и тем более выражена в ней способность к аккомодации. Практическая значимость этого показателя заключается в том, что при проведении различных медицинских манипуляций у человека в ряде случаев можно избежать развития сильных болевых ощущений и шоковых состояний, медленно изменяя скорость нарастания силы и время воздействия.

Лабильность — функциональная подвижность возбудимой ткани. Лабильность определяется скоростью элементарных физико-химических превращений, лежащих в основе одиночного цикла возбуждения. Мерой лабильности является максимальное число циклов (волн) возбуждения, которые может генерировать ткань в единицу времени. Количественно величина лабильности определяется длительностью протекания одиночного никла возбуждения и длительностью фазы абсолютной рефрактерности. Так, вставочные нейроны спинного мозга могут воспроизводить более 500 циклов возбуждения или нервных импульсов в секунду. У них высокая лабильность. Мотонейроны, контролирующие сокращение мышц, характеризуются более низкой лабильностью и способны генерировать не более 100 нервных импульсов в секунду.

Разность потенциалов (ΔЕ) между потенциалом покоя на мембране (Е 0) и критическим уровнем деполяризации мембраны (Е к). ΔЕ = (Е 0 - Е к) является одним из важнейших показателей возбудимости клетки. Этот показатель отражает физическую сущность порога силы раздражителя. Раздражитель является пороговым в случае, когда он способен сместить такой уровень поляризации мембраны до Е к, при достижении которого на мембране развивается процесс возбуждения. Чем меньше значение ΔЕ, тем выше возбудимость клетки и тем на более слабые воздействия она будет реагировать возбуждением. Однако показатель ΔЕ мало доступен для измерения в обычных условиях. Физиологическая значимость этого показателя будет рассмотрена при изучении природы мембранных потенциалов.

Законы реагирования возбудимых тканей на раздражение

Характер реагирования возбудимых тканей на действие раздражителей в классической принято описывать законами раздражения.

Закон силы раздражения утверждает, что при увеличении силы надпорогового раздражителя до определенного предела возрастает и величина ответной реакции. Этот закон применим для ответной реакции сокращения целостной скелетной мышцы и суммарной электрической ответной реакции нервных стволов, включающих множество волокон, обладающих разной возбудимостью. Так, сила сокращения мышцы возрастает при увеличении силы воздействующего на нее раздражителя.

Для тех же возбудимых структур применимы закон длительности раздражения и закон градиента раздражения. Закон длительности раздражения утверждает, что чем больше продолжительность надпорогового раздражения, тем больше величина ответной реакции. Естественно, что возрастание ответа идет только до определенного предела. Закон градиента раздражения - чем больше градиент нарастания силы раздражителя во времени, тем больше (до определенного предела) величина ответной реакции.

Закон все или ничего утверждает, что при действии подпороговых раздражителей возбуждение не возникает, а при действии порогового и надпороговых раздражителей величина ответной реакции, обусловленной возбуждением, остается постоянной. Следовательно, уже на пороговый раздражитель, возбудимая структура отвечает максимально возможной для данного функционального состояния реакцией. Этому закону подчиняются одиночное нервное волокно, на мембране которого в ответ на действие порогового и надпорогового раздражителей генерируется потенциал действия одинаковых амплитуды и длительности. Закону «все или ничего» подчиняется реакция одиночного волокна скелетной мышцы, которое отвечает одинаковыми по амплитуде и продолжительности потенциалами действия и одинаковой силой сокращения как на пороговый, гак и на разные по силе надпороговые раздражители. Этому закону подчиняется также характер сокращения целостной мышцы желудочков сердца и предсердий.

Закон полярного действия электрического тока (Пфлюгера) постулирует, что при действии на возбудимые клетки постоянного электрического тока в момент замыкания цепи возбуждение возникает в месте приложения катода, а при размыкании — в месте контакта с анодом. Само по себе длительное действие постоянного тока на возбудимые клетки и ткани не вызывает в них возбуждения. Невозможность инициирования возбуждения таким током можно рассматривать как следствие их аккомодации к неизменяющемуся во времени раздражителю с нулевой крутизной нарастания. Однако поскольку клеток поляризованы и на их внутренней поверхности имеется избыток отрицательных зарядов, а на внешней — положительных, то в области приложения к ткани анода (положительно заряженного электрода) под действием электрического поля часть положительных зарядов, представленных катионами К+ будет перемещаться внутрь клетки и их концентрация на внешней поверхности станет меньше. Это приведет к понижению возбудимости клеток и участка ткани под анодом. Обратные явления будут наблюдаться под катодом.

Воздействие на живые ткани электрическим током и регистрация биоэлектрических токов часто используются в медицинской практике для диагностики и лечения и особенно при проведении экспериментальных физиологических исследований. Это вызвано тем, что величины биотоков отражают функциональное состояние тканей. Электрический ток обладает лечебным действием, легко дозируем по величине и времени воздействия, и его эффекты могут наблюдаться при силах воздействия, близких к естественным величинам биотоков в организме.


Физиология (от греческих слов: физис – природа, логос – учение, наука) наука о функциях и процессах, протекающих в организме или его составляющих системах, органах, тканях, клетках, и механизмах их регуляции, обеспечивающих жизнедеятельность человека и животного в их взаимодействии с окружающей средой.

Под функцией понимают специфическую деятельность системы или органа. Например, функциями желудочно-кишечного тракта являются моторная, секреторная, всасывательная; функцией дыхания обмен О 2 и СО 2 ; функцией системы кровообращения движение крови по сосудам; функцией миокарда сокращение и расслабление; функцией нейрона возбуждение и торможение, и т.д.

Процесс определяют как последовательную смену явлений или состояний в развитии какого-либо действия или совокупность последовательных действий, направленных на достижение определенного результата.

Система в физиологии подразумевает совокупность органов или тканей, связанных общей функцией. Например, сердечно-сосудистая система, обеспечивающая с помощью сердца и сосудов доставку тканям питательных, регуляторных, защитных веществ и кислорода, а также отвод продуктов обмена и теплообмена. Речедвигательная система – совокупность образований, обеспечивающих в норме реализацию речевой способности человека в виде воспроизведения устной и вокальной речи.

Надежность биологических систем – свойство клеток, органов, систем организма выполнять специфические функции, сохраняя характерные для них величины в течение определенного времени. Основной характеристикой надежности систем служит вероятность безотказной работы. Организм повышает свою надежность различными способами:

1) путем усиления регенеративных процессов, восстанавливающих погибшие клетки,

2) парностью органов (почки, доли легкого и др.),

3) использованием клеток и капилляров в работающем и неработающем режиме: по мере нарастания функции включаются ранее не функционирующие,

4) использованием охранительного торможения,

5) достижением одного и того же результата разными поведенческими действиями.

Физиология изучает жизнедеятельность организма в норме. Норма – это пределы оптимального функционирования живой системы, трактуется по-разному:

а) как средняя величина, характеризующая какую-либо совокупность событий, явлений, процессов,

б) как среднестатистическая величина,

в) как общепризнанное правило, образец.

Физиологическая норма это биологический оптимум жизнедеятельности; нормальный организм это оптимально функционирующая система. Под оптимальным функционированием живой системы, понимают наиболее согласованное и эффективное сочетание всех ее процессов, лучшее из реально возможных состояний, соответствующее определенным условиям деятельности этой системы.

Механизм – способ регулирования процесса или функции. В физиологии принято рассматривать механизмы регуляции; местный (например, растяжение сосудов при повышении артериального давления), гуморальный (влияние на функции и процессы гормонов или гуморальных агентов), нервный (усиление или ослабление процессов при возбуждении или торможении импульсации в первых), центральный (командные посылки из центральной нервной системы).

Под регуляцией понимают минимизацию отклонения функций либо их изменение с целью обеспечения деятельности органов и систем. Этот термин употребляют только в физиологии, а в технических и междисциплинарных науках ему соответствуют понятия «управление» и «регулирование». В этом случае автоматическим регулированием называется либо поддержание постоянства некоторой регулируемой величины, либо ее изменение по заданному закону (программное регулирование), либо в соответствии с некоторым изменяемым внешним процессом (следящее регулирование). Автоматическим управлением называется более обширная совокупность действий, направленных на поддержание или улучшение функционирования управляемого объекта в соответствии с целью управления. Кроме решения задач регулирования, автоматическое управление охватывает механизмы самонастройки (адаптации) систем управления в соответствии с изменением параметров объекта или внешних воздействий, автоматического выбора наилучших режимов из нескольких возможных. В силу этого термин «управление» более точно отражает принципы регулирования в живых системах. В случае программного регулирования регуляция осуществляется «по возмущению», в случае следящего – «по отклонению».

Реакцией называют изменения (усиление или ослабление) деятельности организма или его составляющих в ответ на раздражение (внутреннее или внешнее). Реакции могут быть простые (например, сокращение мышцы, выделение секрета железой) или сложные (пищедобывание). Они могут быть пассивными, возникающими в результате внешних механических усилий, либо активными в виде целенаправленного действия, осуществляемого в результате нервных или гуморальных влияний, или под контролем сознания и воли.

Секрет – специфический продукт жизнедеятельности клетки, выполняющий определенную функцию и выделяющийся на поверхность эпителия или во внутреннюю среду организма. Процесс выработки и выделения секрета называется секрецией. По характеру секрет делят на белковый (серозный), слизистый (мукоидный), смешанный и липидный.

Раздражение – воздействие на живую ткань внешних или внутренних раздражителей. Чем сильнее раздражение, тем сильнее (до определенного предела) и ответная реакция ткани; чем длиннее раздражение, тем сильнее (до определенного предела) и ответная реакция ткани.

Раздражитель – факторы внешней и внутренней среды или их изменения, которые оказывают на органы и ткани влияния, выражающиеся в изменении активности последних. В соответствии с физической природой воздействия раздражители делят на механические, электрические, химические, температурные, звуковые и т.д. Раздражитель может быть по величине пороговым, т.е. оказывающим минимальное эффективное воздействие; максимальным, предъявление которого вызывает эффекты, не изменяющиеся при усилении раздражителя; сверхсильным, действие которого может оказывать повреждающий и болевой эффект, или приводить к неадекватным ощущениям.

Рефлекторная реакция – ответное действие или процесс в организме (системе, органе, ткани, клетке), вызванные рефлексом.

Рефлекс – возникновение, изменение или прекращение функциональной активности органов, тканей или целостного организма, осуществляемое при участии центральной нервной системы в ответ на раздражение нервных окончаний (рецепторов).

Под влиянием различных стимулов, вследствие свойства живой протоплазмы возбудимости, в организме осуществляются процессы возбуждения и торможения. Возбудимость – способность живых клеток воспринимать изменения внешней среды и отвечать на эти изменения реакцией возбуждения. Чем ниже пороговая сила раздражителя, тем выше возбудимость, и наоборот. Возбуждение – активный физиологический процесс, которым некоторые живые клетки (нервные, мышечные, железистые) отвечают на внешнее воздействие. Возбудимые ткани – ткани, способные в ответ на действие раздражителя переходить из состояния физиологического покоя в состояние возбуждения. В принципе, все живые клетки обладают возбудимостью, но в физиологии к этим тканям принято относить преимущественно нервную, мышечную, железистую. Результатом возбуждения является возникновение деятельности организма или его составляющих; следствием торможения является подавление или угнетение деятельности клеток, тканей или органов, т.е. процесс, приводящий к уменьшению или предупреждению возбуждения. Возбуждение и торможение представляют собой взаимопротивоположные и взаимосвязанные процессы. Так, возбуждение может при его усилении переходить в торможение, а торможение способно усиливать последующее возбуждение. Для вызова возбуждения раздражитель должен быть определенной силы, равный или превышающий порог возбуждения, под которым понимают ту минимальную силу раздражения, при которой возникает минимальная по величине реакция раздражаемой ткани.

Автоматия – свойство некоторых клеток, тканей и органов возбуждаться под влиянием возникающих в них импульсов, без влияния внешних раздражителей. Например, автоматия сердца – способность миокарда ритмически сокращаться под влиянием импульсов, возникающих в нем самом.

Лабильность – свойство живой ткани, определяющее ее функциональное состояние. Под лабильностью понимают скорость реакций, лежащих в основе возбуждения, т.е. способность ткани осуществлять единичный процесс возбуждения в определенный промежуток времени. Предельный ритм импульсов, который возбудимая ткань в состоянии воспроизвести в единицу времени, является мерой лабильности, или функциональной подвижности ткани.

Важной особенностью человека и высших животных является постоянство химического состава и физико-химических свойств внутренней среды организма. Для обозначения этого постоянства используется понятие гомеостазис (гомеостаз) – совокупность физиологических механизмов, поддерживающих биологические константы организма на оптимальном уровне. Такими константами являются: температура тела, осмотическое давление крови и тканевой жидкости, содержание в них ионов натрия, калия, кальция, хлора и фосфора, а также белков и сахара, концентрация водородных ионов и др. Это постоянство состава, физико-химических и биологических свойств внутренней среды является не абсолютным, а относительным и динамическим; оно постоянно коррелируется в зависимости от изменений внешней среды и в результате жизнедеятельности организма.

Внутренняя среда организма – совокупность жидкостей (кровь, лимфа, тканевая жидкость), принимающих непосредственное участие в процессах обмена веществ и поддержания гомеостазиса в организме.

Обмен веществ и энергии состоит в поступлении в организм из внешней среды различных веществ, в их изменении и усвоении с последующим выделением образующихся из них продуктов распада. Обмен веществ (метаболизм) представляет собой совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Процессы обмена веществ разделяют на две группы: ассимиляторные и диссимиляторные. Под ассимиляцией понимают процессы усвоения веществ, поступающих в организм из внешней среды; образования более сложных химических соединений из простых, а также происходящий в организме синтез живой протоплазмы. Диссимиляция – это разрушение, распад, расщепление входящих в состав протоплазмы веществ, в частности, белковых соединений.

Компенсаторные механизмы – адаптивные реакции, направленные на устранение или ослабление функциональных сдвигов в организме, вызванных неадекватными факторами среды. Это динамичные, быстро возникающие физиологические средства аварийного обеспечения организма. Они мобилизуются, как только организм попадает в неадекватные условия, и постепенно затухают по мере развития адаптационного процесса. (Например, под воздействием холода усиливаются процессы производства и сохранения тепловой энергии, повышается обмен веществ, в результате рефлекторного сужения периферических сосудов (особенно кожи) уменьшается теплоотдача. Компенсаторные механизмы служат составной частью резервных сил организма. Обладая высокой эффективностью, они могут поддерживать относительно стабильный гомеостазис достаточно долго, для развития устойчивых форм адаптационного процесса).

Адаптация – процесс приспособления организма к меняющимся условиям среды. В качестве важного компонента адаптивной реакции организма выступает стресс-синдром – сумма неспецифических реакций, создающих условия для активации гипоталамо-гипофизарно-надпочечниковой системы, увеличения поступления в кровь и ткани адаптивных гормонов, кортикостероидов и катехоламинов, стимулирующих деятельность гомеостатических систем. Адаптивная роль неспецифических реакций заключается в их способности повышать резистентность (сопротивляемость) организма к различным факторам среды.

Хотя физиология является единой и целостной наукой о функциях организмов животных и человека, ее подразделяют на несколько, в значительной степени самостоятельных, но тесно связанных между собой областей. В этом плане обычно выделяют общую и частную физиологию, сравнительную и эволюционную, а также специальную (или прикладную) физиологию и физиологию человека.

Общая физиология исследует природу процессов, общих для организмов различных видов, а также закономерности реакций организма и его структур на воздействия внешней среды. В связи с этим изучаются такие процессы и свойства, как сократимость, возбудимость, раздражимость, торможение, энергетические и метаболические процессы, общие свойства биологических мембран, клеток, тканей.

Частная физиология изучает функции тканей (мышечной, нервной и др.), органов (мозга, сердца, почек и др.), систем (пищеварения, кровообращения, дыхания и др.).

Сравнительнаяфизиология посвящена изучению сходства и различия каких-либо функций у разных представителей животного мира с целью выявления причин и общих закономерностей изменения функций или появления новых. Особое внимание при этом уделяется выяснению механизмов качественных и количественных изменений физиологических процессов, появившихся в течение видового и индивидуального развития живых существ.

Эволюционная физиология объединяет исследования общебиологических закономерностей и механизмов появления, развития и становления физиологических функций у человека и животных в онто- и филогенезе.

Специальная (прикладная) физиология изучает закономерности изменения функций организма в связи с его специфической деятельностью, практическими задачами или конкретными условиями обитания. В практическом отношении существенное значение имеет физиология сельскохозяйственных животных. К проблемам специальной физиологии иногда относят некоторые разделы физиологии человека (авиационную, космическую, подводную физиологию и др.).

В плане задач физиологии человека выделяются:

1) Авиационная физиология – раздел физиологии и авиационной медицины, ориентированный на исследования реакций организма человека при воздействии на него авиационных полетов с целью разработки методов и средств защиты летного состава от неблагоприятных производственных факторов.

2) Военная физиология – раздел физиологии и военной медицины, в рамках которого изучаются закономерности регуляции функций организма в условиях учебно-боевой и боевой обстановки.

3) Возрастная физиология – исследующая возрастные особенности формирования и угасания функций органов, систем и организма человека от момента зарождения до прекращения его индивидуального (онтогенетического) развития.

4) Клиническая физиология – в рамках которой изучаются роль и характер изменений физиологических процессов в организме человека при развитии и установлении патологических состояний в его органах или системах.

5) Космическая физиология – раздел физиологии и космической медицины, связанный с изучением реакций организма человека на воздействие факторов космического полета (невесомость, гиподинамия и др.) с целью разработки методов и средств защиты человека от их неблагоприятных влияний.

6) Психофизиология – область психологии и физиологии человека, состоящая в изучении объективно регистрируемых сдвигов физиологических функций, сопровождающих психические процессы восприятия, запоминания, мышления, эмоций и др.

7) физиология спорта – исследующая функции организма человека при тренировочных и состязательных упражнениях.

8) Физиология труда – изучающая физиологические процессы и особенности их регуляции во время трудовой деятельности человека с целью физиологического обоснования путей и средств организации.