Как работает электрика все по электричеству. Базовые понятия о электричестве. Основные законы электротехники

Очень немного людей понимают суть электричества. Такие понятия как "электрический ток", "напряжение" "фаза" и "ноль" для большинства являются темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. Для обучения электричеству с "нуля" нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.

Заряд электрона - минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.

Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).

Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).

Основным видом переменного тока является синусоидальный ток . Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.


Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепи – однофазная цепь . В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).

Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или "стекает" в землю.

Провод, по которому ток идет к прибору, называется фазой , а провод, по которому ток возвращается – нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому - отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.

Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ - 50 Гц.

В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.

Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза - белого, черного или коричневого. Провод заземления также имеет свой окрас - желто-зеленый.


Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в студенческий сервис . С помощью наших специалистов даже самая дикая и сложная задача станет вам «по зубам».

Понятно желание людей любого возраста постичь такую науку, как электротехника. Помогут в этом основы электротехники для всех начинающих. В интернете и печати публикуется масса материалов, часто под заглавием «Электротехника для чайников». Начинать нужно с усвоения положений и законов электричества.

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы. Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что изучает электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

С чего начать изучение основ электротехники

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Основные характеристики тока

К основным характеристикам относятся сила тока, напряжение, сопротивление и мощность. Параметры электрического тока, протекающего по проводу, характеризуются именно этими величинами.

Сила тока

Параметр означает количество заряда, проходящего по проводу, за определённое время. Силу тока измеряют в амперах.

Напряжение

Это есть не что иное, как разница потенциалов между двумя точками проводника. Величина измеряется в вольтах. Один вольт – эта разность потенциалов, при которой для переноса заряда в 1 кулон потребуется произвести работу, равную одному джоулю.

Сопротивление

Этот параметр измеряется в омах. Его величина определяет сопротивление энергопотоку. Чем больше масса и площадь поперечного сечения проводника, тем больше сопротивление. Оно также зависит от материала и длины провода. При разнице потенциалов на концах проводника в 1 Вольт и силе тока 1 Ампер сопротивление проводника равно 1 Ому.

Мощность

Физическая величина выражает скорость протекания электроэнергии в проводнике. Мощность тока определяется произведением силы тока и напряжения. Единица мощности – ватт.

Постижение основ электротехники нужно начинать с закона Ома. Именно он является фундаментом всей науки об электричестве. Выдающийся немецкий физик Георг Симон Ом в 1826 году сформулировал закон, в котором определяет взаимозависимость трёх основных параметров электрического тока: силы, напряжения и сопротивления.

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.

Безопасность и практика

Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.

Четыре правила техники безопасности для новичков:

  1. Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
  2. Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
  3. При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
  4. Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.

Видеокурсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Видео

Нетривиально занятие, скажу я вам. :) Дабы облегчить усвоение материала я вводил ряд упрощений. Совершенно бредовых и антинаучных, но более менее наглядно показывающих суть процесса. Методика «канализационной электрики» успешно показала себя в полевых испытаниях, а посему будет использована и тут. Хочу лишь обратить внимание, что это всего лишь наглядное упрощение, справедливое для общего случая и конкретного момента, чтобы понять суть и к реальной физике процесса не имеющая практически никакого отношения. Зачем оно тогда? А чтобы проще запомнить, что к чему и не путать напряжение и ток и понимать как на все это влияет сопротивление, а то я от студентов такого наслушался…

Ток, напряжение, сопротивление.

Если сравнить электроцепь с канализацией, то источник питания это сливной бачок, текущая вода – ток, давление воды-напряжение, а несущееся по трубам говнище – полезная нагрузка. Чем выше сливной бачок, тем больше потенциальная энергия воды, находящейся в нем, и тем сильней будет напор-ток проходящий по трубам, а значит больше дерьма-нагрузки он сможет смыть.
Кроме текущего дерьма, потоку препятствует трение о стенки труб, образуя потери. Чем толще трубы тем меньше потери (гы гы гы теперь ты помнимаешь почему аудиофилы для своей мощной акустики берут провода потолще;)).
Итак, подведем итог. Электроцепь содержит источник, создающий между своими полюсами разность потенциалов – напряжение. Под действием этого напряжения ток устремляется через нагрузку туда, где потенциал ниже. Движению тока препятствует сопротивление, образуемое из полезной нагрузки и потерь. В результате напряжение-давление ослабевает тем сильней, чем больше сопротивление. Ну, а теперь, положим нашу канализацию в математическое русло.

Закон Ома

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, что Uисточника = U1 +U2 +U3 . Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Закон Кирхгоффа.

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.
Р = U * I
Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:
P= R * I 2

Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии.
Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

Электричество применяется во многих областях, оно окружает нас практически повсюду. Электроэнергия позволяет получать безопасное освещение дома и на работе, кипятить воду, готовить пищу, работать на компьютере и станках. Вместе с тем, обращаться с электричеством необходимо уметь, иначе можно не только получить травмы, но и нанести вред имуществу. Как правильно прокладывать проводку, организовывать снабжение объектов электричеством, изучает такая наука, как электротехника.

Понятие электричества

Все вещества состоят из молекул, которые, в свою очередь, состоят из атомов. У атома есть ядро и движущиеся вокруг него положительно и отрицательно заряженные частицы (протоны и электроны). При нахождении двух материалов рядом друг с другом между ними возникает разность потенциалов (у атомов одного вещества электронов всегда меньше, чем у другого), что приводит к появлению электрического заряда – электроны начинают перемещаться от одного материала к другому. Так возникает электричество. Другими словами, электричество – это энергия, возникающая в результате перемещения отрицательно заряженных частиц из одного вещества в другое.

Скорость перемещения может быть разной. Чтобы движение было в нужном направлении и с нужной скоростью, используются проводники. Если движение электронов по проводнику осуществляется только в одном направлении, такой ток называется постоянным. Если же направление перемещения с определенной частотой меняется, то ток будет переменным. Самым известным и простым источником постоянного тока является батарейка или автомобильный аккумулятор. Переменный ток активно используется в бытовом хозяйстве и в промышленности. На нем работают практически все устройства и оборудование.

Что изучает электротехника

Данная наука знает практически все об электричестве. Изучить ее необходимо всем, кто хочет получить диплом или квалификацию электрика. В большинстве учебных заведений курс, на котором изучают все, что связано с электроэнергией, называется «Теоретические основы электротехники» или, сокращенно ТОЭ.

Данная наука получила развитие в XIX веке, когда был изобретен источник постоянного тока, и появилась возможность строить электрические цепи. Дальнейшее развитие электротехника получила в процессе новых открытий в области физики электромагнитных излучений. Чтобы без проблем осваивать науку в настоящее время, необходимо иметь знания не только в области физики, но также химии и математики.

В первую очередь, на курсе ТОЭ изучаются основы электричества, дается определение тока, исследуются его свойства, характеристики и направления применения. Далее изучаются электромагнитные поля и возможности их практического использования. Завершается курс, как правило, изучением устройств, в которых используется электрическая энергия.

Чтобы разобраться с электричеством, не обязательно поступать в высшее или среднее учебное заведение, достаточно воспользоваться самоучителем или пройти видеоуроки «для чайников». Полученных знаний вполне хватит, чтобы разобраться с проводкой, заменить лампочку или повесить люстру дома. Но, если планируется профессионально работать с электричеством (например, в должности электромонтера или энергетика), то соответствующее образование будет обязательным. Оно позволяет получить специальный допуск на работу с приборами и устройствами, работающими от источника тока.

Основные понятия электротехники

Изучая электричество для начинающих, главное разобраться с тремя основными терминами:

  • Сила тока;
  • Напряжение;
  • Сопротивление.

Под силой тока понимается количество электрического заряда, протекающего через проводник с определенным сечением за единицу времени. Другими словами, количество электронов, которые переместились из одного конца проводника в другой за некоторое время. Сила тока является самой опасной для жизни и здоровья человека. Если взяться за оголенный провод (а человек – это тоже проводник), то электроны пройдут через него. Чем больше их пройдет, тем больше будут повреждения, поскольку в процессе своего движения они выделяют тепло и запускают различные химические реакции.

Однако чтобы ток шел по проводникам, между одним и другим концом проводника должно быть напряжение или разность потенциалов. Причем она должна быть постоянной, чтобы движение электронов не прекращалось. Для этого электрическую цепь обязательно замыкают, а на одном конце цепи обязательно ставят источник тока, который обеспечивает в цепи постоянное движение электронов.

Сопротивление – это физическая характеристика проводника, его способность к проведению электронов. Чем ниже сопротивление проводника, тем большее количество электронов по нему пройдет за единицу времени, тем выше сила тока. Высокое сопротивление, наоборот, уменьшает силу тока, но влечет за собой нагревание проводника (если напряжение достаточно высоко), что может привести к возгоранию.

Подбор оптимальных соотношений между напряжением, сопротивлением и силой тока в электрической цепи является одной из основных задач электротехники.

Электротехника и электромеханика

Электромеханика является разделом электротехники. Она изучает принципы функционирования устройств и оборудования, которые работают от источника электрического тока. Изучив основы электромеханики, можно научиться ремонтировать различное оборудование или даже проектировать его.

В рамках уроков по электромеханике, как правило, изучаются правила преобразования электрической энергии в механическую (каким образом функционирует электродвигатель, принципы работы любого станка и так далее). Также исследуются и обратные процессы, в частности, принципы действия трансформаторов и генераторов тока.

Таким образом, без понимания того, как составляются электрические цепи, принципов их функционирования и других вопросов, которые изучает электротехника, осваивать электромеханику невозможно. С другой стороны, электромеханика является более сложной дисциплиной и носит прикладной характер, поскольку результаты ее изучения применяются непосредственно при конструировании и ремонте машин, оборудования и различных электрических устройств.

Безопасность и практика

Осваивая курс электротехники для начинающих, необходимо уделить особое внимание вопросам безопасности, поскольку несоблюдение определенных правил может привести к трагическим последствиям.

Первое правило, которому необходимо следовать, – обязательно знакомиться с инструкцией. У всех электроприборов в руководстве по эксплуатации всегда имеется раздел, который посвящен вопросам безопасности.

Второе правило заключается в контроле состояния изоляции проводников. Все провода обязательно должны покрываться специальными материалами, не проводящими электричество (диэлектриками). Если изоляционный слой нарушен, в первую очередь, следует его восстановить, иначе возможно нанесение вреда здоровью. Кроме того, работу в целях безопасности с проводами и электрооборудованием следует производить только в специальной одежде, которая не проводит электричество (резиновые перчатки и диэлектрические боты).

Третье правило состоит в использовании для диагностики параметров электросети только специальных приборов. Ни в коем случае не стоит делать этого голыми руками или пробовать «на язык».

Обратите внимание! Пренебрежение данными элементарными правилами является основной причиной травм и несчастных случаев в работе электриков и электромонтеров.

Чтобы получить начальное представление об электричестве и принципах работы устройств с его применением, рекомендуется пройти специальный курс или изучить пособие «Электротехника для начинающих». Подобные материалы разработаны специально для тех, кто пытается с нуля освоить данную науку и получить необходимые навыки для работы с электрооборудованием в быту.

В пособии и видеоуроках подробно рассказывается, как устроена электрическая цепь, что такое фаза, а что такое ноль, чем отличается сопротивление от напряжения и силы тока и так далее. Отдельное внимание уделяется технике безопасности, чтобы избежать травм при работе с электроприборами.

Конечно, изучение курсов или чтение пособий не позволит стать профессиональным электриком или электромонтером, но решить большинство бытовых вопросов по итогам освоения материала будет вполне по силам. Для профессиональной работы требуется уже получение специального допуска и наличие профильного образования. Без этого выполнять должностные обязанности запрещается различными инструкциями. Если же предприятие допустит человека без необходимого образования к работе с электрооборудованием, и он получит травму, руководитель понесет серьезное наказание, вплоть до уголовного.

Видео

Начнем пожалуй с понятия электричества. Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. В качестве частиц могут выступать свободные электроны металла, если ток течет по металлическому проводу, или ионы, если ток течет в газе или жидкости.
Есть ещё ток в полупроводниках, но это отдельная тема для разговора. Как пример можно привести высоковольтный трансформатор из микроволновки – сначала электроны бегут по проводам, затем ионы движутся между проводами, соответственно сначала ток идет через металл, а потом через воздух. Вещество называются проводником или полупроводником, если в нём есть частицы, способные переносить электрический заряд. Если таких частиц нет, то такое вещество называется диэлектриком, оно не проводит электричество. Заряженные частицы несут на себе электрический заряд, который измеряется обозначается q в кулонах.
Единица измерения силы тока называется Ампер и обозначается буковой I, ток величиной в 1 Ампер образуется при прохождении через точку электрической цепи заряда величиной 1 Кулон за 1 секунду, то есть грубо говоря сила тока измеряется в кулонах секунду. И по сути сила тока это количество электричества, протекающего за единицу времени через поперечное сечение проводника. Чем больше заряженных частиц бежит по проводу, тем соответственно больше ток.
Чтобы заставить заряженные частицы перемещаться от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Напряжение измеряется в вольтах и обозначается буквой V или U. Чтобы получить напряжение величиной 1 Вольт нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж. Согласен, немного непонятно.

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под действием силы тяжести вытекает через трубу. Пусть вода – это электрический заряд, высота водяного столба – это напряжение, а скорость потока воды – это электрический ток. Точнее не скорость потока, а количество вытекающей за секунду воды. Вы понимаете, что чем выше уровень воды, тем больше будет давление внизу А чем выше давление внизу, тем больше воды вытечет через трубу, потому что скорость будет выше.. Аналогично чем выше напряжение, тем больший ток будет течь в цепи.

Зависимость между всеми тремя рассмотренными величинами в цепи постоянного тока определяет закон ома, который выражается вот такой формулой, и звучит как сила тока в цепи прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению. Чем больше сопротивление, тем меньше ток, и наоборот.

Добавлю ещё пару слов про сопротивление. Его можно измерить, а можно посчитать. Допустим у нас есть проводник, имеющий известную длину и площадь поперечного сечения. Квадратный, круглый, неважно. Разные вещества имеют разное удельное сопротивление, и для нашего воображаемого проводника существует вот такая формула, определяющая зависимость между длиной, площадью поперечного сечения и удельным сопротивлением. Удельное сопротивление веществ можно найти в интернете в виде таблиц.
Можно опять же провести аналогию с водой: вода течёт по трубе, пусть труба имеет удельную шершавость. Логично предположить, что чем длиннее и уже труба, тем меньше воды будет по ней протекать за единицу времени. Видите, как всё просто? Формулу даже запоминать не нужно, достаточно представить себе трубу с водой.
Что касается измерения сопротивления, то нужен прибор, омметр. В наше время более популярны универсальные приборы – мультиметры, они измеряют и сопротивление, и ток, и напряжение, и ещё кучу всего. Давайте проведём эксперимент. Я возьму отрезок нихромовой проволоки известной длины и площади сечения, найду удельное сопротивление на сайте где я её купил и посчитаю сопротивление. Теперь этот же кусочек измерю при помощи прибора. Для такого маленького сопротивления мне придется вычесть сопротивление щупов моего прибора, которое равно 0.8 Ом. Вот так вот!
Шкала мультиметра разбита по размерам измеряемых величин, это сделано для более высокой точности измерения. Если я хочу измерить резистор с номиналом 100 кОм, я ставлю рукоятку на большее ближайшее сопротивление. В моём случае это 200 килоом. Если хочу измерить 1 килоом, то ставлю на 2 ком. Это справедливо для измерения остальных величин. То есть на шкале отложены пределы измерения, в который нужно попасть.
Давайте продолжим развлекаться с мультиметром и попробуем измерить остальные изученные величины. Возьму несколько разных источников постоянного тока. Пусть это будет блок питания на 12 вольт, юсб порт и трансформатор, который в своей молодости сделал мой дед.
Напряжение на этих источниках мы можем измерить прямо сейчас, подключив вольтметр параллельно, то есть непосредственно к плюсу и к минусу источников. С напряжением всё понятно, его можно взять и измерить. А вот чтобы измерить силу тока, нужно создать электрическую цепь, по которой будет протекать ток. В электрической цепи обязательно должен быть потребитель, или нагрузка. Давайте подключим потребитель к каждому источнику. Кусочек светодиодной ленты, моторчик и резистор на (160 ом).
Давайте измерим ток, протекающий в цепях. Для этого переключаю мультиметр в режим измерения силы тока и переключаю щуп во вход для тока. Амперметр подключается в цепь последовательно измеряемому объекту. Вот схема, её тоже следует помнить и не путать с подключением вольтметра. Кстати существует такая штуковина как токовые клещи. Они позволяют измерять силу тока в цепи без подключения непосредственно к цепи. То есть не нужно отсоединять провода, просто накидываешь их на провод и они измеряют. Ну ладно, вернёмся к нашему обычному амперметру.

Итак, я измерил все токи. Теперь мы знаем, какой ток потребляется в каждой цепи. Здесь у нас светятся светодиоды, здесь крутится моторчик а здесь…. Так стоять, а че делает резистор? Он не поёт нам песни, не освещает комнату и не вращает никакой механизм. Так на что он тратит целых 90 миллиампер? Так не пойдёт, давайте разбираться. Слышь ты! Ау, он горячий! Так вот куда расходуется энергия! А можно ли как-то посчитать, что здесь за энергия? Оказывается – можно. Закон, описывающий тепловое действие электрического тока был открыт в 19 веке двумя учеными, джеймсом джоулем и эмилием ленцем.
Закон назвали закон джоуля ленца. Он выражается вот такой формулой, и численно показывает, сколько джоулей энергии выделяется в проводнике, в котором течёт ток, за единицу времени. Из этого закона можно найти мощность, которая выделяется на этом проводнике, мощность обозначается английской буквой Р и измеряется в ваттах. Я нашёл вот такую очень крутую табличку, которая связывает все изученные нами на этот момент величины.
Таким образом у меня на столе электрическая мощность идёт на освещение, на совершение механической работы и на нагрев окружающего воздуха. Кстати именно на этом принципе работают различные нагреватели, электрочайники, фены, паяльники и прочее. Там везде стоит тоненькая спираль, которая нагревается под действием тока.

Этот момент стоит учитывать при подведении проводов к нагрузке, то есть прокладка проводки к розеткам по квартире тоже входит в это понятие. Если вы возьмете для подведения к розетке слишком тонкий провод и подключите в эту розетку компьютер, чайник и микроволновку, то провод может нагреться вплоть до возникновения пожара. Поэтому есть вот такая табличка, которая связывает площадь поперечного сечения проводов с максимальной мощностью, которая по этим проводам будет идти. Если вздумаете тянуть провода – не забудьте об этом.

Также в рамках этого выпуска хотелось бы напомнить особенности параллельного и последовательного соединения потребителей тока. При последовательном соединении сила тока одинакова на всех потребителях, напряжение разделилось на части, а общее сопротивление потребителей представляет собой сумму всех сопротивлений. При параллельном соединении напряжение на всех потребителях одинаково, сила тока разделилась, а общее сопротивление вычисляется вот по такой формуле.
Из этого вытекает один очень интересный момент, который можно использовать для измерения силы тока. Допустим нужно измерить силу тока в цепи около 2 ампер. Амперметр с этой задачей не справляется, поэтому можно использовать закон ома в чистом виде. Знаем, что сила тока одинакова при последовательном соединении. Возьмём резистор с очень маленьким сопротивлением и вставим его последовательно нагрузке. Измерим на нём напряжение. Теперь, пользуясь законом ома, найдём силу тока. Как видите, она совпадает с расчётом ленты. Здесь главное помнить, что этот добавочный резистор должен быть как можно меньшего сопротивления, чтобы оказывать минимальное влияние на измерения.

Есть ещё один очень важный момент, о котором нужно знать. Все источники имеют максимальный отдаваемый ток, если этот ток превысить – источник может нагреться, выйти из строя, а в худшем случае ещё и загореться. Самый благоприятный исход это когда источник имеет защиту от перегрузки по току, в таком случае он просто отключит ток. Как мы помним из закона ома, чем меньше сопротивление, тем выше ток. То есть если взять в качестве нагрузки кусок провода, то есть замкнуть источник самого на себя, то сила тока в цепи подскочит до огромных значений, это называется короткое замыкание. Если вы помните начало выпуска, то можете провести аналогию с водой. Если подставить нулевое сопротивление в закон ома то мы получим бесконечно большой ток. На практике такое конечно не происходит, потому что источник имеет внутреннее сопротивление, которое подключено последовательно. Этот закон называется закон ома для полной цепи. Таким образом ток короткого замыкания зависит от величины внутреннего сопротивления источника.
Сейчас давайте вернёмся к максимальному току, который может выдать источник. Как я уже говорил, силу тока в цепи определяет нагрузка. Многие писали мне вк и задавали примерно вот такой вопрос, я его слегка утрирую: саня, у меня есть блок питания на 12 вольт и 50 ампер. Если я подключу к нему маленький кусочек светодиодной ленты, она не сгорит? Нет, конечно же она не сгорит. 50 ампер – это максимальный ток, который способен выдать источник. Если ты подключишь к нему кусочек ленты, она возьмёт свои ну допустим 100 миллиампер, и все. Ток в цепи будет равен 100 миллиампер, и никто никуда не будет гореть. Другое дело, если возьмёшь километр светодиодной ленты и подключишь его к этому блоку питания, то ток там будет выше допустимого, и блок питания скорее всего перегреется и выйдет из строя. Запомните, именно потребитель определяет величину тока в цепи. Этот блок может выдать максимум 2 ампера, и когда я закорачиваю его на болтик, с болтиком ничего не происходит. А вот блоку питания это не нравится, он работает в экстремальных условиях. А вот если взять источник, способный выдать десятки ампер, такая ситуация не понравится уже болтику.

Давайте для примера произведём расчёт блока питания, который потребуется для питания известного отрезка светодиодной ленты. Итак, закупили мы у китайцев катушку светодиодной ленты и хотим запитать три метра этой самой ленты. Для начала идём на страницу товара и пытаемся найти, сколько ватт потребляет один метр ленты. Эту информацию я найти не смог, поэтому есть вот такая табличка. Смотрим, что у нас за лента. Диоды 5050, 60 штук на метр. И видим, что мощность составляет 14 ватт на метр. Я хочу 3 метра, значит мощность будет 42 ватта. Блок питания желательно брать с запасом на 30% по мощности, чтобы он не работал в критическом режиме. В итоге получаем 55 ватт. Ближайший подходящий блок питания будет на 60 ватт. Из формулы мощности выражаем силу тока и находим её, зная, что светодиоды работают при напряжении 12 вольт. Выходит, нам нужен блок с током 5 ампер. Заходим, например, на али, находим, покупаем.
Очень важно знать потребляемый ток при изготовлении всяких USB самоделок. Максимальный ток, который можно взять от USB, составляет 500 миллиампер, и его лучше не превышать.
И напоследок коротенько о технике безопасности. Здесь вы можете видеть, до каких значений электричество считается неопасным для жизни человека.